搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定中和驱动一体化的超导转子驱动方法

张源 胡新宁 崔春艳 崔旭 牛飞飞 黄兴 王路忠 王秋良

引用本文:
Citation:

定中和驱动一体化的超导转子驱动方法

张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良

Superconducting rotor drive method with integrated driving and alignment

Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Huang Xing, Wang Lu-Zhong, Wang Qiu-Liang
PDF
HTML
导出引用
  • 高速旋转的超导转子可制作高精度惯性器件, 对载体的角位置或角速度进行测量, 超导转子的质量偏心和球面误差是影响测量精度的主要误差源. 超导转子结构越复杂, 其制作和装配过程造成的质量偏心和球面误差就越大, 则其测量角速度的精度越低. 基于此, 本文设计了一种结构简单的超导转子驱动电磁结构, 并通过有限元方法研究了定子对超导转子产生的转矩, 分析了定子对超导转子的定中和加转效果. 基于对超导转子转矩的研究结果, 提出了一种定中和驱动一体化的超导转子驱动方法, 即通过定子线圈同时实现定中和驱动功能, 并设计了对应的定子控制时序. 最后分析了所提驱动方法驱动过程的力矩分布, 并结合定子系统的响应特性对驱动效果进行了定量分析, 计算了不同条件下超导转子加速到50 Hz需要的时间. 结果表明, 所设计的驱动电磁结构及提出的定中驱动一体化的驱动方法可以对超导转子定中和驱动, 研究结果为进一步优化超导转子结构, 及超导转子的驱动方法提供参考.
    The high-speed rotating superconducting rotor can be used as a high-precision inertial device to measure the angular position or angular velocity of the carrier. The mass eccentricity and spherical error of the superconducting rotor are the main error sources that affect the measurement accuracy. The more complex the structure of the superconducting rotor, the greater the mass eccentricity and spherical error caused by its production and assembly process are, and the lower the accuracy of its measurement of angular velocity. Based on this, in this work, an electromagnetic drive structure with a simple rotor structure is designed. And the torque generated by the stator on the superconducting rotor is studied through finite element method (FEM). The effects of the stator on vertical alignment and acceleration of the superconducting rotor are analyzed. Based on the research results of the superconducting rotor torque, a superconducting rotor drive method with integrated driving and vertical alignment is proposed, which achieves the driving and vertical alignment functions simultaneously through the stator coil, and corresponding stator control timing is designed. Finally, the torque distribution in the driving process of the proposed driving method is analyzed, and the driving effect is quantitatively analyzed based on the response characteristics of the stator system. The time for the superconducting rotor to be accelerated to 50 Hz under different conditions is calculated. The results show that the designed driving electromagnetic structure and the proposed integrated driving method of vertical alignment and driving can be used for vertical aligning and driving the superconducting rotor. The research results provide a reference for further optimizing the superconducting rotor structure and driving methods of superconducting rotors.
      通信作者: 胡新宁, xininghu@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51721005)资助的课题.
      Corresponding author: Hu Xin-Ning, xininghu@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51721005).
    [1]

    汤继强, 赵琳, 罗俊艳 2004 弹箭与制导学报 24 136Google Scholar

    Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar

    [2]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Met. Mater. Eng. 37 436Google Scholar

    [3]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [4]

    江磊, 钟智勇, 仪德英, 张怀武 2014 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2014 Chin. J. Sci. Instrum. 29 1115Google Scholar

    [5]

    韩玉龙, 向楠 2017 高新技术企业 05 16Google Scholar

    Han Y L, Xiang N 2017 Chin. High-Tech Enterprise 05 16Google Scholar

    [6]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2014 物理学报 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2014 Acta Phys. Sin. 64 018403Google Scholar

    [7]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [8]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [9]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, 1967 June 13–15, p657

    [10]

    汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [11]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [12]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [13]

    Hu X N, Cui C Y, Wang H, Liu J H, Wang H S, Wang H, Dai Y M, Li Y, Cheng J S, Li L K, Feng Z K, Yan L G 2015 IEEE Trans. Appl. Supercond. 25 5201705Google Scholar

    [14]

    Cui C Y, Li L K, Hu X N, Wang H, Wang Q L 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, November 20–23, 2015 p439

    [15]

    Shang M X, Dai Y M, Wang Q L, Yu Y J, Zhao B Z, Kim K, Oh S 2006 IEEE Trans. Appl. Supercond. 16 1481Google Scholar

    [16]

    Hu X N, Wang Q L, Wang H S, Cui C Y, Liu J H 2012 IEEE Trans. Appl. Supercond. 22 3600904Google Scholar

    [17]

    Buchhold T A 1961 Cryogenics 1 203Google Scholar

    [18]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Met. Mater. Eng. 37 217Google Scholar

    [19]

    刘延柱 1979 静电陀螺仪动力学(北京: 清华大学出版社)第21—23页)

    Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [20]

    Cui C Y, Wang Q L, Zhao S W, Hu X N 2010 IEEE Trans. Appl. Supercond. 20 1763Google Scholar

    [21]

    王生春, 张兢 2001 电路原理 (重庆: 重庆大学出版社) 第109—124页

    Wang S C, Zhang J 2001 Circuit Principle (Chongqing: Chongqing University Press) pp109–124

  • 图 1  超导转子四切面和八切面图

    Fig. 1.  Four cutting planes and eight cutting planes of superconducting rotor.

    图 2  超导转子四切面和八切面的驱动结构图

    Fig. 2.  Structure of four cutting planes and eight cutting planes of superconducting rotor.

    图 3  超导转子切削深度示意图

    Fig. 3.  Schematic of cutting depth of superconducting rotor.

    图 4  四切面不同切削深度下的驱动力矩

    Fig. 4.  Driving torque under four cutting with different d.

    图 5  八切面不同切削深度下的驱动力矩

    Fig. 5.  Driving torque under eight cutting with different d

    图 6  四切面和八切面的平均驱动力矩对比

    Fig. 6.  Comparison of driving torque of rotor with four cutting surfaces and those with eight cutting surfaces.

    图 7  超导转子结构图

    Fig. 7.  Superconducting rotor structure.

    图 8  通电25 A定子线圈产生磁场模值分布图

    Fig. 8.  Magnetic flux density generated by stator coils energized 25 A.

    图 9  通电10 A转子驱动力矩分布

    Fig. 9.  Distribution of torque to rotor generated by stator coil energized 10 A.

    图 10  超导转子赤道平面示意图

    Fig. 10.  Diagram of the superconducting rotor equatorial plane.

    图 11  超导转子绕任意赤道轴定中力矩分布图

    Fig. 11.  Distribution diagram of the torque to make superconducting rotor erect.

    图 12  超导转子的两种类型质量偏心图

    Fig. 12.  Two types of mass eccentricity model diagram for superconducting rotor.

    图 13  超导转子的定中力矩分布 (a) θ = 22.5°; (b) θ = 45°

    Fig. 13.  Torque distribution to make superconducting rotor erect: (a) θ = 22.5°; (b) θ = 45°.

    图 14  超导转子定中范围及平衡位置 (a) θ = 22.5°; (b) θ = 45°

    Fig. 14.  Centering range and balance position for superconducting rotor: (a) θ = 22.5°; (b) θ = 45°.

    图 15  超导转子在不同极偏角下的驱动力矩分布

    Fig. 15.  Driving torque distribution with different inclination angles for superconducting rotor.

    图 16  单路定子线圈通电的驱动力矩

    Fig. 16.  Driving torque of the single-circuit stator coil energized with current.

    图 17  半驱动角周期力矩积分与驱动电流的关系

    Fig. 17.  Relationship between half cycle torque integration and driving current.

    图 18  定中驱动一体化结构的驱动过程力矩分布

    Fig. 18.  Torque distribution during the driving process.

    图 19  逆时针旋转逻辑电路时序信号

    Fig. 19.  Counterclockwise logic circuit control.

    图 20  顺时针旋转逻辑电路时序信号

    Fig. 20.  Clockwise logic circuit control signal.

    图 21  转子花纹图案

    Fig. 21.  Rotor pattern.

    图 22  转速信号和八花纹信号的相位关系 (a) 逆时针旋转; (b) 顺时针旋转

    Fig. 22.  Phase relationship between rotational speed signal and eight pattern signal: (a) Counterclockwise; (b) clockwise.

    图 23  定中电流10 A和5 A时, 不同驱动电流的平均驱动力矩图

    Fig. 23.  Average drive moment of different driving currents with another circuit energized 10 A and 5 A.

    图 24  定子回路系统示意图

    Fig. 24.  Schematic diagram of stator circuit system.

    图 25  定子回路电流响应

    Fig. 25.  Current response of stator circuit.

    图 26  定中电流为10 A和5 A时, 不同驱动电流加转到50 Hz的时间

    Fig. 26.  Time for the superconducting rotor to be accelerated to 50 Hz by applying different driving currents with centering current of 10 A and 5 A.

  • [1]

    汤继强, 赵琳, 罗俊艳 2004 弹箭与制导学报 24 136Google Scholar

    Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar

    [2]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Met. Mater. Eng. 37 436Google Scholar

    [3]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [4]

    江磊, 钟智勇, 仪德英, 张怀武 2014 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2014 Chin. J. Sci. Instrum. 29 1115Google Scholar

    [5]

    韩玉龙, 向楠 2017 高新技术企业 05 16Google Scholar

    Han Y L, Xiang N 2017 Chin. High-Tech Enterprise 05 16Google Scholar

    [6]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2014 物理学报 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2014 Acta Phys. Sin. 64 018403Google Scholar

    [7]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [8]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [9]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, 1967 June 13–15, p657

    [10]

    汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [11]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [12]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [13]

    Hu X N, Cui C Y, Wang H, Liu J H, Wang H S, Wang H, Dai Y M, Li Y, Cheng J S, Li L K, Feng Z K, Yan L G 2015 IEEE Trans. Appl. Supercond. 25 5201705Google Scholar

    [14]

    Cui C Y, Li L K, Hu X N, Wang H, Wang Q L 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, November 20–23, 2015 p439

    [15]

    Shang M X, Dai Y M, Wang Q L, Yu Y J, Zhao B Z, Kim K, Oh S 2006 IEEE Trans. Appl. Supercond. 16 1481Google Scholar

    [16]

    Hu X N, Wang Q L, Wang H S, Cui C Y, Liu J H 2012 IEEE Trans. Appl. Supercond. 22 3600904Google Scholar

    [17]

    Buchhold T A 1961 Cryogenics 1 203Google Scholar

    [18]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Met. Mater. Eng. 37 217Google Scholar

    [19]

    刘延柱 1979 静电陀螺仪动力学(北京: 清华大学出版社)第21—23页)

    Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [20]

    Cui C Y, Wang Q L, Zhao S W, Hu X N 2010 IEEE Trans. Appl. Supercond. 20 1763Google Scholar

    [21]

    王生春, 张兢 2001 电路原理 (重庆: 重庆大学出版社) 第109—124页

    Wang S C, Zhang J 2001 Circuit Principle (Chongqing: Chongqing University Press) pp109–124

  • [1] 丛源涛, 王秋良, 程军胜, 熊玲, 孙建. 一种轴径双向分离式电磁线圈驱动装置的结构响应特性. 物理学报, 2024, 73(13): 130201. doi: 10.7498/aps.73.20240239
    [2] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 王路忠, 王秋良. 旋转超导转子的氦气阻尼特性. 物理学报, 2024, 73(8): 088401. doi: 10.7498/aps.73.20232011
    [3] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [4] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 超导转子磁悬浮结构磁耦合特性及承载能力分析. 物理学报, 2023, 72(12): 128401. doi: 10.7498/aps.72.20230328
    [5] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, 2022, 71(14): 148701. doi: 10.7498/aps.71.20220350
    [6] 王童, 温娟, 吕康, 陈健中, 汪亮, 郭新. 仿生生物感官的感存算一体化系统. 物理学报, 2022, 71(14): 148702. doi: 10.7498/aps.71.20220281
    [7] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [8] 宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦. 基于一体化微球物镜的超分辨成像系统. 物理学报, 2020, 69(13): 134201. doi: 10.7498/aps.69.20191994
    [9] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性. 物理学报, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [10] 华昀峰, 章林溪. 自驱动颗粒体系中的熵力. 物理学报, 2017, 66(19): 190701. doi: 10.7498/aps.66.190701
    [11] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [12] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [13] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [14] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法. 物理学报, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [15] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [16] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应. 物理学报, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [17] 徐大伟, 梁中翥, 梁静秋, 李伟, 李小奇, 孙智丹, 王维彪. 柔性悬臂电磁驱动光开关的仿真与制作. 物理学报, 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 聂在平, 王浩刚. 含腔电大尺寸导体目标电磁散射的一体化数值模拟. 物理学报, 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
    [20] 夏蒙棼, 胡慧玲. 高频电磁波驱动等离子体电流. 物理学报, 1982, 31(2): 150-158. doi: 10.7498/aps.31.150
计量
  • 文章访问数:  2214
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-09-26
  • 上网日期:  2023-10-12
  • 刊出日期:  2024-02-05

/

返回文章
返回