搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀流体的体积黏度: Maxwell弛豫模型

孙宗利 康艳霜 张君霞

引用本文:
Citation:

非均匀流体的体积黏度: Maxwell弛豫模型

孙宗利, 康艳霜, 张君霞

Volume viscosity of inhomogeneous fluids: a Maxwell relaxation model

Sun Zong-Li, Kang Yan-Shuang, Zhang Jun-Xia
PDF
HTML
导出引用
  • 基于黏弹力学中的Maxwell弛豫理论, 提出一种新颖的、可用于计算非均匀体积黏度的理论方法. 该方法通过体相流体的黏性和弹性特征来计算体系的局域弛豫时间, 进而结合体系的局域弛豫模量来计算体积黏度的非均匀分布. 作为应用, 计算了受限于平行狭缝中的Lennard-Jones流体的非均匀体积黏度, 系统地研究了体密度、温度、缝宽和吸附强度等因素对体积黏度的影响. 结果表明, 上述因素的变化均可显著地调制狭缝中流体的体积黏度. 其中, 体密度和吸附强度的增大均有益于体积黏度的增强, 而温度的升高将则会削弱其体积黏度. 此外, 毛细凝聚的发生也对受限流体的体积黏度具有显著的调制作用.
    Volume viscosity is one of the most important and fundamental parameters in hydrodynamics. It measures the momentum loss caused by a volume deformation rather than shape deformation. So it is closely related to numerous phenomena in fluid dynamics. However, most of the existing related researches focus on the bulk fluids, but there is still a lack of in-depth understanding of the bulk viscosity of inhomogeneous fluids. In this work, a novel theoretical method is proposed for the inhomogeneous volume viscosity in the framework of Maxwell viscoelastic theory. In this proposal, the local relaxation time is calculated by using the viscous and elastic properties of the bulk fluids. Accordingly, the inhomogeneous volume viscosity can be obtained by combining the calculations of the local relaxation time and the local relaxation modulus. It is advantageous in the theoretical sense over the conventional LADM, because it takes into account the underlying correlation much better. On the one hand, the local infinite-frequency modulus is more accurate. On the other hand, by using an appropriate weight function to calculate the weight, the correlation effect can be better considered . As an application, the volume viscosity of the confined Lennard-Jones fluid in slit pore is investigated, and the influences of bulk density, temperature, pore width and adsorption strength are calculated and analyzed. The results indicate that these factors can significantly modulate the volume viscosity of the confined fluid. Specifically, the positive correlation between the volume viscosity and the local density leads to the oscillation of viscosity profile in the pore. Besides, the occurrence of capillary condensation in the cases of lower density and lower temperature makes the inhomogeneous viscosity rather different from that of bulk gaseous phase. Further, this study shows that the inhomogeneous volume viscosity usually increases with temperature decreasing, or with adsorption strength increasing. This is again the result of its dependence on the fluid structure in the pore. Furthermore, the influence of pore width on the inhomogeneous volume viscosity indicates that the excluded volume plays a decisive role. This can be attributed to the fact that it exerts a direct influence on the deformation of the fluid. Moreover, comparison between the volume and shear viscosity is also conducted and analyzed. In general, this study can be beneficial to deepening the understanding of volume viscosity in the confined fluids, and can provide reliable theoretical support for studying related issues in hydrodynamics.
      通信作者: 孙宗利, sunzl@ncepu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金和河北农业大学自主培养人才科研专项(批准号: ZY2023007)资助的课题.
      Corresponding author: Sun Zong-Li, sunzl@ncepu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China and the Research Project for Independently Cultivate Talents of Hebei Agricultural University, China (Grant No. ZY2023007).
    [1]

    Stephan K, Lucas K D 1979 Viscosities of Dense Fluids (New York: Plenum

    [2]

    Richardson S M 1989 Fluid Mechanics (New York: Hemisphere Publishing Corporation

    [3]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier Science

    [4]

    Cerbelaud M, Laganapan A M, Ala-Nissila T, Ferrandod R, Videcoq A 2017 Soft Matter 13 3909Google Scholar

    [5]

    Zabaloy M S, Machado J M V, Macedo E A 2001 Int. J. Thermophys. 22 829Google Scholar

    [6]

    Duque-Zumajo D, de la Torre J A, Español P 2020 J. Chem. Phys. 152 174108Google Scholar

    [7]

    Zhang J F, Todd B D, Travis K P 2004 J. Chem. Phys. 121 10778Google Scholar

    [8]

    钱祖文 2012 物理学报 61 134301Google Scholar

    Qian Z W 2012 Acta Phys. Sin. 61 134301Google Scholar

    [9]

    Stokes G G 1845 Trans. Cambridge Philos. Soc. 8 287

    [10]

    Bhola S, Sengupta T K 2019 Phys. Fluids 31 096101Google Scholar

    [11]

    Rahimzadeh A, Rutsch M, Kupnik M, Klitzing R 2021 Langmuir 37 5854Google Scholar

    [12]

    Chen S, Wang X N, Wang J C, Wan M P, Li H, Chen S Y 2019 Phys. Fluids 31 085115Google Scholar

    [13]

    Bhatia A B 1967 Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids (New York: Oxford University Press

    [14]

    Emanuel G 1990 Phys. Fluids A 2 2252Google Scholar

    [15]

    Meier K, Laesecke A, Kabelac S 2005 J. Chem. Phys. 122 014513Google Scholar

    [16]

    Zhang Y, Otani A, Maginn E J 2015 J. Chem. Theory Comput. 11 3537Google Scholar

    [17]

    Sharma B, Kumar R, Gupta P, Pareek S, Singh A 2022 Phys. Fluids 34 057104Google Scholar

    [18]

    Heyes D M, Pieprzyk S, Brańka A C 2022 J. Chem. Phys. 157 114502Google Scholar

    [19]

    Hoover W G, Ladd A J C, Hickman R B, Holian B L 1980 Phys. Rev. A 21 1756Google Scholar

    [20]

    Sharma B, Kumar R 2019 Phys. Rev. E 100 013309Google Scholar

    [21]

    Palla P L, Pierleoni C, Ciccotti G 2008 Phys. Rev. E 78 021204Google Scholar

    [22]

    Rah K, Eu B C 1999 Phys. Rev. Lett. 83 4566Google Scholar

    [23]

    Okumura H, Yonezawa F 2002 J. Chem. Phys. 116 7400Google Scholar

    [24]

    Gelb L D, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M 1999 Rep. Prog. Phys. 62 1573Google Scholar

    [25]

    Yu Y X, Gao G H, Wang X L 2006 J. Phys. Chem. B 110 14418Google Scholar

    [26]

    Zhao S L, Liu Y, Chen X Q, Lu Y X, Liu H L, Hu Y 2015 Adv. Chem. Eng. 47 1Google Scholar

    [27]

    Mittal J, Truskett T M, Errington J R, Hummer G 2008 Phys. Rev. Lett. 100 145901Google Scholar

    [28]

    Banks H T, Hu S H, Kenz Z R 2011 Adv. Appl. Math. Mech. 3 1Google Scholar

    [29]

    Bitsanis I, Vanderlick T K, Tirrell M, Davis H T 1988 J. Chem. Phys. 89 3152Google Scholar

    [30]

    Hoang H, Galliero G 2012 Phys. Rev. E 86 021202Google Scholar

    [31]

    Hoang H, Galliero G 2013 J. Phys. Condens. Matter 25 485001Google Scholar

    [32]

    Heyes D M 1984 J. Chem. Soc. Faraday Trans. II 80 1363Google Scholar

    [33]

    Zwanzig R, Mountain R D 1965 J. Chem. Phys. 43 4464Google Scholar

    [34]

    Sun Z L, Kang Y S, Kang Y M 2019 Ind. Eng. Chem. Res. 58 15637Google Scholar

    [35]

    Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591Google Scholar

    [36]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 10156Google Scholar

    [37]

    Liu Y, Liu H L, Hu Y, Jiang J W 2010 J. Phys. Chem. B 114 2820Google Scholar

    [38]

    Sun Z L, Kang Y S, Li S T 2022 J. Phys. Chem. B 126 8010Google Scholar

    [39]

    Sun Z L, Kang Y S, Li S T 2023 Chem. Eng. Sci. 277 118847Google Scholar

    [40]

    Goyal I, Zaheri A H M, Srivastava S, Tankeshwar K 2013 Phys. Chem. Liq. 55 595Google Scholar

    [41]

    Jaeger F, Matar O K, Müller E A 2018 J. Chem. Phys. 148 174504Google Scholar

    [42]

    Cowan J A, Leech J W 1981 Can. J. Phys. 59 1280

    [43]

    Paeßens M 2003 J. Chem. Phys. 118 10287Google Scholar

  • 图 1  Maxwell黏弹模型示意图 (a) 弹簧单元; (b) 活塞单元; (c) 标准线性固体模型

    Fig. 1.  A sketch of the Maxwell viscoelastic model: (a) Spring unit; (b) piston unit; (c) standard linear solid model.

    图 2  狭缝中LJ流体的局域弛豫模量的分布. 图中实线为$ {K}_{2}\left(z\right) $的结果, 虚线为$ {K}_{\infty }^{{\mathrm{b}}}\left(\bar{\rho }\left(z\right)\right)-{K}_{0}^{{\mathrm{b}}}\left(\bar{\rho }\left(z\right)\right) $的结果. 计算中的参数取为$ {T}^{*}=1.5 $, $ {H}^{*}=6.0 $. 此外, 约化模量$ {K}_{2}^{*}={K}_{2}{\sigma }^{3}/\varepsilon $

    Fig. 2.  Profiles of the local relaxation modulus of LJ fluid in slits. In the figure, the solid and dashed lines stand for the results of $ {K}_{2}\left(z\right) $ and $ {K}_{\infty }^{{\mathrm{b}}}\left(\bar{\rho }\left(z\right)\right)-{K}_{0}^{{\mathrm{b}}}\left(\bar{\rho }\left(z\right)\right) $, respectively. In the calculations, the parameters are set as $ {T}^{*}=1.5 $, $ {H}^{*}=6.0 $. In addition, the modulus is reduced as $ {K}_{2}^{*}={K}_{2}{\sigma }^{3}/\varepsilon $.

    图 3  狭缝中LJ流体的剪切黏度分布. 计算中的流体参数取为$ {\rho }_{{\mathrm{b}}}^{*}=0.291 $, $ {T}^{*}=2.0 $

    Fig. 3.  Profiles of shear viscosity of LJ fluid in slits. In the calculations, the fluid parameters are set as $ {\rho }_{{\mathrm{b}}}^{*}=0.291 $ and $ {T}^{*}=2.0 $.

    图 4  狭缝中LJ流体的平均体积黏度随缝宽$ {H}^{*} $的变化. 其中, 实线、虚线和点分别为本文结果、LADM结果和基于GK的解析结果

    Fig. 4.  Dependence of the averaged volume viscosity of LJ fluid on the pore width $ H $. In each figure, the solid lines, dashed lines and symbols stand for the results from this work, LADM and GK-based method, respectively.

    图 5  在$ {H}^{*}=6.0 $情况下, 体积黏度$ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $随体密度的变化 (a) $ {T}^{*}=2.0 $; (b) $ {T}^{*}=1.0 $

    Fig. 5.  Influence of bulk density on the volume viscosity $ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $ under the condition of $ {H}^{*}=6.0 $: (a) $ {T}^{*}=2.0; $ (b) $ {T}^{*}=1.0 $.

    图 6  在$ {H}^{*}=6.0 $情况下, 受限流体中比值$ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $随体密度的变化

    Fig. 6.  Influence of bulk density on the ratio $ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $ of the confined fluids, under the condition of $ {H}^{*}=6.0 $.

    图 7  在$ {H}^{*}=6.0 $情况下, 体积黏度$ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $随温度的变化 (a) $ {\rho }_{{\mathrm{b}}}^{*}=0.01; $ (b) $ {\rho }_{{\mathrm{b}}}^{*}=0.6 $.

    Fig. 7.  Influence of temperature on the volume viscosity $ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $ under the condition of $ {H}^{*}=6.0: $ (a) $ {\rho }_{{\mathrm{b}}}^{*}=0.01 $; (b) $ {\rho }_{{\mathrm{b}}}^{*}=0.6 $.

    图 8  在$ {H}^{*}=6.0 $情况下, 受限流体中比值$ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $随温度的变化

    Fig. 8.  Influence of temperature on the ratio $ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $ of the confined fluids, under the condition of $ {H}^{*}=6.0 $.

    图 9  在$ {T}^{*}=1.5 $和$ {\rho }_{{\mathrm{b}}}^{*}=0.8 $条件下, (a) 体积黏度$ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $随缝宽的变化; (b) 比值$ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $随缝宽的变化. 图(b)中虚线为同一条件下体相液态的实验结果[40]

    Fig. 9.  Influence of pore width on (a) the volume viscosity $ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $ and (b) the ratio $ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $, under the conditions of $ {T}^{*}=1.5 $ and $ {\rho }_{{\mathrm{b}}}^{*}=0.8 $. The dashed line in panel (b) denotes the experimental result[40] under the same conditions.

    图 10  在$ {H}^{*}=6.0 $情况下, 体积黏度$ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $随吸附势强度的变化 (a) $ {\rho }_{{\mathrm{b}}}^{*}=0.1 $; (b) $ {\rho }_{{\mathrm{b}}}^{*}=0.6 $

    Fig. 10.  Influence of adsorption strength on the volume viscosity $ {\eta }_{{\mathrm{v}}}^{*}\left({z}^{*}\right) $ under the condition of $ {H}^{*}=6.0 $: (a) $ {\rho }_{{\mathrm{b}}}^{*}= $$ 0.1 $; (b) $ {\rho }_{{\mathrm{b}}}^{*}=0.6 $.

    图 11  在$ {H}^{*}=6.0 $情况下, 受限流体中比值$ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $随吸附势强度的变化

    Fig. 11.  Influence of adsorption strength on the ratio $ {R}_{\eta }^{{\mathrm{p}}{\mathrm{o}}{\mathrm{r}}{\mathrm{e}}} $ of the confined fluids, under the condition of $ {H}^{*}=6.0 $.

    表 1  (14)式中的拟合系数$ {c}_{i1} $和$ {c}_{i2} $

    Table 1.  Fitting parameters of $ {c}_{i1} $ and $ {c}_{i2} $ in the Eq. (14).

    i
    0123
    $ {c}_{i1} $10.679–62.281127.680–80.568
    $ {c}_{i2} $–10.20359.117–118.96076.376
    下载: 导出CSV
  • [1]

    Stephan K, Lucas K D 1979 Viscosities of Dense Fluids (New York: Plenum

    [2]

    Richardson S M 1989 Fluid Mechanics (New York: Hemisphere Publishing Corporation

    [3]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier Science

    [4]

    Cerbelaud M, Laganapan A M, Ala-Nissila T, Ferrandod R, Videcoq A 2017 Soft Matter 13 3909Google Scholar

    [5]

    Zabaloy M S, Machado J M V, Macedo E A 2001 Int. J. Thermophys. 22 829Google Scholar

    [6]

    Duque-Zumajo D, de la Torre J A, Español P 2020 J. Chem. Phys. 152 174108Google Scholar

    [7]

    Zhang J F, Todd B D, Travis K P 2004 J. Chem. Phys. 121 10778Google Scholar

    [8]

    钱祖文 2012 物理学报 61 134301Google Scholar

    Qian Z W 2012 Acta Phys. Sin. 61 134301Google Scholar

    [9]

    Stokes G G 1845 Trans. Cambridge Philos. Soc. 8 287

    [10]

    Bhola S, Sengupta T K 2019 Phys. Fluids 31 096101Google Scholar

    [11]

    Rahimzadeh A, Rutsch M, Kupnik M, Klitzing R 2021 Langmuir 37 5854Google Scholar

    [12]

    Chen S, Wang X N, Wang J C, Wan M P, Li H, Chen S Y 2019 Phys. Fluids 31 085115Google Scholar

    [13]

    Bhatia A B 1967 Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids (New York: Oxford University Press

    [14]

    Emanuel G 1990 Phys. Fluids A 2 2252Google Scholar

    [15]

    Meier K, Laesecke A, Kabelac S 2005 J. Chem. Phys. 122 014513Google Scholar

    [16]

    Zhang Y, Otani A, Maginn E J 2015 J. Chem. Theory Comput. 11 3537Google Scholar

    [17]

    Sharma B, Kumar R, Gupta P, Pareek S, Singh A 2022 Phys. Fluids 34 057104Google Scholar

    [18]

    Heyes D M, Pieprzyk S, Brańka A C 2022 J. Chem. Phys. 157 114502Google Scholar

    [19]

    Hoover W G, Ladd A J C, Hickman R B, Holian B L 1980 Phys. Rev. A 21 1756Google Scholar

    [20]

    Sharma B, Kumar R 2019 Phys. Rev. E 100 013309Google Scholar

    [21]

    Palla P L, Pierleoni C, Ciccotti G 2008 Phys. Rev. E 78 021204Google Scholar

    [22]

    Rah K, Eu B C 1999 Phys. Rev. Lett. 83 4566Google Scholar

    [23]

    Okumura H, Yonezawa F 2002 J. Chem. Phys. 116 7400Google Scholar

    [24]

    Gelb L D, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M 1999 Rep. Prog. Phys. 62 1573Google Scholar

    [25]

    Yu Y X, Gao G H, Wang X L 2006 J. Phys. Chem. B 110 14418Google Scholar

    [26]

    Zhao S L, Liu Y, Chen X Q, Lu Y X, Liu H L, Hu Y 2015 Adv. Chem. Eng. 47 1Google Scholar

    [27]

    Mittal J, Truskett T M, Errington J R, Hummer G 2008 Phys. Rev. Lett. 100 145901Google Scholar

    [28]

    Banks H T, Hu S H, Kenz Z R 2011 Adv. Appl. Math. Mech. 3 1Google Scholar

    [29]

    Bitsanis I, Vanderlick T K, Tirrell M, Davis H T 1988 J. Chem. Phys. 89 3152Google Scholar

    [30]

    Hoang H, Galliero G 2012 Phys. Rev. E 86 021202Google Scholar

    [31]

    Hoang H, Galliero G 2013 J. Phys. Condens. Matter 25 485001Google Scholar

    [32]

    Heyes D M 1984 J. Chem. Soc. Faraday Trans. II 80 1363Google Scholar

    [33]

    Zwanzig R, Mountain R D 1965 J. Chem. Phys. 43 4464Google Scholar

    [34]

    Sun Z L, Kang Y S, Kang Y M 2019 Ind. Eng. Chem. Res. 58 15637Google Scholar

    [35]

    Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591Google Scholar

    [36]

    Yu Y X, Wu J Z 2002 J. Chem. Phys. 117 10156Google Scholar

    [37]

    Liu Y, Liu H L, Hu Y, Jiang J W 2010 J. Phys. Chem. B 114 2820Google Scholar

    [38]

    Sun Z L, Kang Y S, Li S T 2022 J. Phys. Chem. B 126 8010Google Scholar

    [39]

    Sun Z L, Kang Y S, Li S T 2023 Chem. Eng. Sci. 277 118847Google Scholar

    [40]

    Goyal I, Zaheri A H M, Srivastava S, Tankeshwar K 2013 Phys. Chem. Liq. 55 595Google Scholar

    [41]

    Jaeger F, Matar O K, Müller E A 2018 J. Chem. Phys. 148 174504Google Scholar

    [42]

    Cowan J A, Leech J W 1981 Can. J. Phys. 59 1280

    [43]

    Paeßens M 2003 J. Chem. Phys. 118 10287Google Scholar

  • [1] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] 彭凡, 张秀梅, 刘琳, 王秀明. 非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析. 物理学报, 2023, 72(5): 050401. doi: 10.7498/aps.72.20221858
    [3] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [4] 张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠. 基于时间反演的局域空间多目标均匀恒定长时无线输能. 物理学报, 2022, 71(1): 014101. doi: 10.7498/aps.71.20211231
    [5] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散. 物理学报, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [6] 张知原, 李冰. 基于时间反演的局域空间多目标均匀恒定长时无线输能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211231
    [7] 崔树稳, 刘伟伟, 朱如曾, 钱萍. 关于非均匀系统局部平均压力张量的推导及对均匀流体的分析. 物理学报, 2019, 68(15): 156801. doi: 10.7498/aps.68.20182189
    [8] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [9] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [10] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量. 物理学报, 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [11] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量. 物理学报, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [12] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [13] 耿浩然, 孙春静, 杨中喜, 王 瑞, 吉蕾蕾. 金属熔体黏度与结构相关性的分子动力学模拟. 物理学报, 2006, 55(3): 1320-1324. doi: 10.7498/aps.55.1320
    [14] 赵建玉, 孙喜明, 贾 磊. 气体分子动力学交通流模型弛豫时间的改进. 物理学报, 2006, 55(5): 2306-2312. doi: 10.7498/aps.55.2306
    [15] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [16] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [17] 李健, 张立德, 王静. 用高斯分布法计算非晶态聚合物聚氯乙烯主转变过程中的动态力学弛豫时间谱分布. 物理学报, 1992, 41(5): 814-818. doi: 10.7498/aps.41.814
    [18] 费浩生, 张云, 韩力, 赵峰, 魏振乾. 用喇曼增强非简并四波混频测量喇曼模的横向弛豫时间. 物理学报, 1989, 38(12): 2054-2058. doi: 10.7498/aps.38.2054
    [19] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  1803
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-12-03
  • 上网日期:  2024-01-06
  • 刊出日期:  2024-03-20

/

返回文章
返回