搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双Λ超核同位旋标量巨共振性质的相对论研究

温静 孙帅 曹李刚 张丰收

温静, 孙帅, 曹李刚, 张丰收. 双Λ超核同位旋标量巨共振性质的相对论研究. 物理学报, 2024, 73(4): 042101. doi: 10.7498/aps.73.20231531
引用本文: 温静, 孙帅, 曹李刚, 张丰收. 双Λ超核同位旋标量巨共振性质的相对论研究. 物理学报, 2024, 73(4): 042101. doi: 10.7498/aps.73.20231531
Wen Jing, Sun Shuai, Cao Li-Gang, Zhang Feng-Shou. Isoscalar giant resonances of $^{{\bf{18}}}_{{\boldsymbol{\Lambda\Lambda}}}{\bf{O}}$ in relativistic approach. Acta Phys. Sin., 2024, 73(4): 042101. doi: 10.7498/aps.73.20231531
Citation: Wen Jing, Sun Shuai, Cao Li-Gang, Zhang Feng-Shou. Isoscalar giant resonances of $^{{\bf{18}}}_{{\boldsymbol{\Lambda\Lambda}}}{\bf{O}}$ in relativistic approach. Acta Phys. Sin., 2024, 73(4): 042101. doi: 10.7498/aps.73.20231531

双Λ超核同位旋标量巨共振性质的相对论研究

温静, 孙帅, 曹李刚, 张丰收

Isoscalar giant resonances of $^{{\bf{18}}}_{{\boldsymbol{\Lambda\Lambda}}}{\bf{O}}$ in relativistic approach

Wen Jing, Sun Shuai, Cao Li-Gang, Zhang Feng-Shou
PDF
HTML
导出引用
  • 基于相对论平均场理论(RMF), 采用TM1以及有效超子−核子和超子−超子相互作用, 首先研究了16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$的单粒子能级受超子的影响情况, 发现超子的加入使得核子能级能量降低. 其次基于相对论无规位相近似方法(RRPA), 自洽地计算了16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$同位旋标量巨单极和四极共振态. 发现相比于16O各巨共振的响应函数, 超核的响应函数会发生改变. 研究表明: 这种改变主要来自于超子的加入导致的核子单粒子能级的改变, 以及超子粒子−空穴组态跃迁的贡献, 而超子−超子剩余相互作用对单极和四极共振在低能区的响应函数的影响比较小, 特别对高能区的响应函数基本没有影响.
    The interactions between hyperon-nucleon and hyperon-hyperon have been an important topic in strangeness nuclear physics, which play an important role in understanding the properties of hypernuclei and equation of state of strangeness nuclear matter. It is very difficult to perform a direct scattering experiment of the nucleon and hyperon because the short lifetime of the hyperon. Therefore, the hyperon-nucleon interaction and the hyperon-hyperon interaction have been mainly investigated experimentally by $\gamma$ spectroscopy of single-$\Lambda$ hypernuclei or double-$\Lambda$ hypernuclei. There are also many theoretical methods developed to describe the properties of hypernuclei. Most of these models focus mostly on the ground state properties of hypernuclei, and have given exciting results in producing the banding energy, the energy of single-particle levels, deformations, and other properties of hypernuclei. Only a few researches adopting Skyrme energy density functionals is devoted to the study of the collective excitation properties of hypernuclei. In present work, we have extended the relativistic mean field and relativistic random phase approximation theories to study the collective excitation properties of hypernuclei, and use the methods to study the isoscalar collective excited state properties of double $\Lambda$ hypernuclei. First, the effect of $\Lambda$ hyperons on the single-particle energy of 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$ are discussed in the relativistic mean field theory, the calculations are performed within TM1 parameter set and related hyperon-nucleon interaction, and hyperon-hyperon interaction. We find that it gives a larger attractive effect on the ${{\mathrm{s}}}_{1/2}$ state of proton and neutron, while gives a weaker attractive effect on the state around Fermi surface. The self-consistent relativistic random phase approximation is used to study the collectively excited state properties of hypernucleus $^{18}_{\Lambda\Lambda}{\rm{O}}$. The isoscalar giant monopole resonance and quadrupole resonance are calculated and analysed in detail, we pay more attention to the effect of the inclusion of $\Lambda$ hyperons on the properties of giant resonances. Comparing with the strength distributions of 16O, changes of response function of $^{18}_{\Lambda\Lambda}{\rm{O}}$ are evidently found both on the isoscalar giant monopole resonance and quadrupole resonance. It is shown that the difference comes mainly from the change of Hartree energy of particle-hole configuration and the contribution of the excitations of $\Lambda$ hyperons. We find that the hyperon-hyperon residual interactions have small effect on the monopole resonance function and quadrupole response function in the low-energy region, and have almost no effect on the response functions in the high-energy region.
      PACS:
      21.80.+a(Hypernuclei)
      24.30.Cz(Giant resonances)
      21.60.Jz(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
      通信作者: 曹李刚, caolg@bnu.edu.cn ; 张丰收, fszhang@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275025, 11975096, 12135004, 11635003, 11961141004)和中央高校基本科研业务费专项资金(批准号: 2020NTST06)资助的课题.
      Corresponding author: Cao Li-Gang, caolg@bnu.edu.cn ; Zhang Feng-Shou, fszhang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275025, 11975096, 12135004, 11635003, 11961141004) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020NTST06).
    [1]

    Danysz M, Pniewski J 1953 Lond. Edinb. Dublin Philos. Mag. 44 348Google Scholar

    [2]

    Ma Y G 2013 J. Phys.: Conf. Ser. 420 012036Google Scholar

    [3]

    Brinkmann K T, Gianotti P, Lehmann I 2006 Nucl. Phys. News 16 15Google Scholar

    [4]

    Tamura H 2012 Prog. Theor. Exp. Phys. 2012 02B012

    [5]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 317 263Google Scholar

    [6]

    Feng Z Q 2020 Phys. Rev. C 101 064601Google Scholar

    [7]

    Feng Z Q 2020 Phys. Rev. C 101 014605Google Scholar

    [8]

    Kohri H, Ajimura S, Hayakawa H, Kishimoto T, Matsuoka K, Minami S, Miyake, Mori T, Morikubo K, Saji E, Sakaguchi A, Shimizu Y, Sumihama M 2002 Phys. Rev. C 65 034607Google Scholar

    [9]

    Rayet M 1981 Nucl. Phys. A 367 381Google Scholar

    [10]

    Zhou X R, Schulze H J, Sagawa H, Wu C X, Zhao E G 2007 Phys. Rev. C 76 034312Google Scholar

    [11]

    Yamamoto Y, Hiyama E, Rijken T 2010 Nucl. Phys. A 835 350Google Scholar

    [12]

    Ma Z Y, Speth J, Krewald S, Chen B Q, Reuber A 1996 Nucl. Phys. A 608 305Google Scholar

    [13]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G: Nucl. Part. Phys. 39 085107Google Scholar

    [14]

    Rong Y T, Tu Z H, Zhou S G 2021 Phys. Rev. C 104 054321Google Scholar

    [15]

    Haidenbauer J, Meiβner U G, Nogga A 2020 Eur. Phys. J. A 56 91Google Scholar

    [16]

    Nemura H, Akaishi Y, Suzuki Y 2002 Phys. Rev. Lett. 89 142504Google Scholar

    [17]

    Hiyama E, Yamada T 2009 Prog. Part. Nucl. Phys. 63 339Google Scholar

    [18]

    Isaka M, Yamamoto Y, Motoba T 2020 Phys. Rev. C 101 024301Google Scholar

    [19]

    Wang Y N, Shen H 2010 Phys. Rev. C 81 025801Google Scholar

    [20]

    Vidaña I, Polls A, Ramos A, Schulze H J 2001 Phys. Rev. C 64 044301Google Scholar

    [21]

    Tan Y H, Zhong X H, Cai C H, Ning P Z 2004 Phys. Rev. C 70 054306Google Scholar

    [22]

    Sun T T, Lu W L, Zhang S S 2017 Phys. Rev. C 96 044312Google Scholar

    [23]

    Lu B N, Hiyama E, Sagawa H, Zhou S G 2014 Phys. Rev. C 89 044307Google Scholar

    [24]

    Lu B N, Zhao E G, Zhou S G 2011 Phys. Rev. C 84 014328Google Scholar

    [25]

    Song C Y, Yao J M, Meng J 2009 Chin. Phys. Lett. 26 122102Google Scholar

    [26]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19Google Scholar

    [27]

    Yao J M, Li Z P, Hagino K, Win M T, Zhang Y, Meng J 2011 Nucl. Phys. A 868-869 12Google Scholar

    [28]

    Li A, Hiyama E, Zhou X R, Sagawa H 2013 Phys. Rev. C 87 014333Google Scholar

    [29]

    Zhang Y, Sagawa H, Hiyama E 2021 Phys. Rev. C 103 034321Google Scholar

    [30]

    Chen C F, Chen Q B, Zhou X R, Cheng Y Y, Cui J W, Schulze H J 2022 Chin. Phys. C 46 064109Google Scholar

    [31]

    Mei H, Hagino K, Yao J M 2016 Phys. Rev. C 93 011301(RGoogle Scholar

    [32]

    Gaitanos T, Lenske H 2014 Phys. Lett. B 737 256Google Scholar

    [33]

    Cheng H G, Feng Z Q 2022 Phys. Lett. B 824 136849Google Scholar

    [34]

    Ring P, Ma Z Y, Van Giai N, Vretenar D, Wandelt A, Cao L G 2001 Nucl. Phys. A 694 249Google Scholar

    [35]

    Ma Z Y, Wandelt A, Van Giai N, Vretenar D, Ring P, Cao L G 2002 Nucl. Phys. A 703 222Google Scholar

    [36]

    Paar N, Ring R, Nikšić T, Vretenar D 2003 Phys. Rev. C 67 034312Google Scholar

    [37]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [38]

    Wang Z H, Naito T, Liang H Z, Long W H 2020 Phys. Rev. C 101 064306Google Scholar

    [39]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [40]

    Kružić G, Oishi T, Vale D, Paar N 2020 Phys. Rev. C 102 044315Google Scholar

    [41]

    Chang S Y, Wang Z H, Niu Y F, Long W H 2022 Phys. Rev. C 105 034330Google Scholar

    [42]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [43]

    Roca-Maza X, Cao L G, Colo G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [44]

    Cao L G, Roca-Maza X, Colo G, Sagawa H 2015 Phys. Rev. C 92 034308Google Scholar

    [45]

    Colo G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [46]

    Cao L G, Sagawa H, Colo G 2011 Phys. Rev. C 83 034324Google Scholar

    [47]

    Wen P W, Cao L G, Margueron J, Sagawa H 2014 Phys. Rev. C 89 044311Google Scholar

    [48]

    Minato F, Hagino K 2012 Phys. Rev. C 85 024316Google Scholar

    [49]

    Lü H, Zhang S S, Zhang Z H, Wu Y Q, Liu J, Cao L G 2018 Chin. Phys. Lett. 35 062102Google Scholar

    [50]

    Serot B D, Walecka J D 1986 Advances in Nuclear Physics (Vol. 16) (New York-London: Plenum Press) pp77–105

    [51]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [52]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [53]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [54]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121–122 1

    [55]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [56]

    An R, Jiang X, Cao L G, Zhang F S 2022 Phys. Rev. C 105 014325Google Scholar

    [57]

    An R, Dong X X, Cao L G, Zhang F S 2023 Commun. Theor. Phys. 75 035301Google Scholar

    [58]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [59]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [60]

    Zhang S S, Sun B H, Zhou S G 2007 Chin. Phys. Lett. 24 1199Google Scholar

    [61]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [62]

    Zhang Y, Luo Y X, Liu Q, Guo J Y 2023 Phys. Lett. B 838 137716Google Scholar

    [63]

    Ma Z Y, Giai N V, Toki H, L’Huillier M 1997 Phys. Rev. C 55 2385Google Scholar

    [64]

    Sugahara Y, Toki H 1994 Nucl. Phys. A 579 557Google Scholar

    [65]

    Shen H, Yang F, Toki H 2006 Prog. Theor. Phys. 115 325Google Scholar

  • 图 1  中子、质子和超子的单粒子能级. 黑色实线为16O的单粒子能级, 红色虚线为$^{18}_{\Lambda\Lambda}{\rm{O}}$的核子和超子单粒子能级

    Fig. 1.  Single-particle energies of neutrons, protons, and Lambda hyperons. Energy levels of 16O are denoted by black solid lines while those of $^{18}_{\Lambda\Lambda}{\rm{O}}$ are denoted by red dashed lines.

    图 2  16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$同位旋标量巨单极共振响应函数 (a) Hartree响应函数; (b) RRPA响应函数

    Fig. 2.  Response functions of isoscalar monopole resonance for 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$: (a) Hartree response; (b) RRPA response.

    图 3  16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$的同位旋标量巨四极共振响应函数 (a) Hartree响应函数; (b) RRPA响应函数

    Fig. 3.  Response functions of isoscalar quadrupole resonance for 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$: (a) Hartree response; (b) RRPA response.

    表 1  TM1参数, 核子以及介子质量的单位为MeV

    Table 1.  Parameter sets TM1, and the masses of nucleons and mesons are given in MeV

    M mσ mω mρ mσ mω mρ g2/fm–1 g3 c3
    TM1 938.0 511.2 783.0 770.0 10.029 12.614 4.632 –7.233 0.618 71.307
    下载: 导出CSV

    表 2  使用相对论平均场模型计算得到的$^{16}$O和$^{18}_{\Lambda\Lambda}$O中质子、中子的单粒子能级($\varepsilon$), $\Delta \varepsilon$表示普通核与超核之间的相应能级差 (单位为MeV)

    Table 2.  Single-particle energies of neutrons and protons in $^{16}$O and $^{18}_{\Lambda\Lambda}$O, the results are obtained by using the RMF model. $\Delta \varepsilon$ is the difference of corresponding level in normal nucleus and hypernucleus (unit in MeV).

    p n
    $ \varepsilon $($^{16}{\rm O}$) $ \varepsilon ({}^{18}_{\Lambda\Lambda}{\rm O})$) $\Delta \varepsilon$ $ \varepsilon ({}^{16}{\rm O}$) $ \varepsilon ({}^{18}_{\Lambda\Lambda}{\rm O}$) $\Delta \varepsilon$
    ${\rm{1 s}}_{1/2}$ –36.55 –38.12 1.57 –40.72 –42.29 1.57
    ${\rm{1 p}}_{3/2}$ –17.75 –19.07 1.32 –21.66 –22.97 1.31
    ${\rm{1 p}}_{1/2}$ –12.14 –12.70 0.56 –15.99 –16.53 0.54
    ${\rm{1 d}}_{5/2}$ –1.20 –2.23 1.03 –4.67 –5.74 1.07
    ${\rm{2 s}}_{1/2}$ 0.70 0.35 0.35 –2.12 –2.56 0.44
    下载: 导出CSV
  • [1]

    Danysz M, Pniewski J 1953 Lond. Edinb. Dublin Philos. Mag. 44 348Google Scholar

    [2]

    Ma Y G 2013 J. Phys.: Conf. Ser. 420 012036Google Scholar

    [3]

    Brinkmann K T, Gianotti P, Lehmann I 2006 Nucl. Phys. News 16 15Google Scholar

    [4]

    Tamura H 2012 Prog. Theor. Exp. Phys. 2012 02B012

    [5]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 317 263Google Scholar

    [6]

    Feng Z Q 2020 Phys. Rev. C 101 064601Google Scholar

    [7]

    Feng Z Q 2020 Phys. Rev. C 101 014605Google Scholar

    [8]

    Kohri H, Ajimura S, Hayakawa H, Kishimoto T, Matsuoka K, Minami S, Miyake, Mori T, Morikubo K, Saji E, Sakaguchi A, Shimizu Y, Sumihama M 2002 Phys. Rev. C 65 034607Google Scholar

    [9]

    Rayet M 1981 Nucl. Phys. A 367 381Google Scholar

    [10]

    Zhou X R, Schulze H J, Sagawa H, Wu C X, Zhao E G 2007 Phys. Rev. C 76 034312Google Scholar

    [11]

    Yamamoto Y, Hiyama E, Rijken T 2010 Nucl. Phys. A 835 350Google Scholar

    [12]

    Ma Z Y, Speth J, Krewald S, Chen B Q, Reuber A 1996 Nucl. Phys. A 608 305Google Scholar

    [13]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G: Nucl. Part. Phys. 39 085107Google Scholar

    [14]

    Rong Y T, Tu Z H, Zhou S G 2021 Phys. Rev. C 104 054321Google Scholar

    [15]

    Haidenbauer J, Meiβner U G, Nogga A 2020 Eur. Phys. J. A 56 91Google Scholar

    [16]

    Nemura H, Akaishi Y, Suzuki Y 2002 Phys. Rev. Lett. 89 142504Google Scholar

    [17]

    Hiyama E, Yamada T 2009 Prog. Part. Nucl. Phys. 63 339Google Scholar

    [18]

    Isaka M, Yamamoto Y, Motoba T 2020 Phys. Rev. C 101 024301Google Scholar

    [19]

    Wang Y N, Shen H 2010 Phys. Rev. C 81 025801Google Scholar

    [20]

    Vidaña I, Polls A, Ramos A, Schulze H J 2001 Phys. Rev. C 64 044301Google Scholar

    [21]

    Tan Y H, Zhong X H, Cai C H, Ning P Z 2004 Phys. Rev. C 70 054306Google Scholar

    [22]

    Sun T T, Lu W L, Zhang S S 2017 Phys. Rev. C 96 044312Google Scholar

    [23]

    Lu B N, Hiyama E, Sagawa H, Zhou S G 2014 Phys. Rev. C 89 044307Google Scholar

    [24]

    Lu B N, Zhao E G, Zhou S G 2011 Phys. Rev. C 84 014328Google Scholar

    [25]

    Song C Y, Yao J M, Meng J 2009 Chin. Phys. Lett. 26 122102Google Scholar

    [26]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19Google Scholar

    [27]

    Yao J M, Li Z P, Hagino K, Win M T, Zhang Y, Meng J 2011 Nucl. Phys. A 868-869 12Google Scholar

    [28]

    Li A, Hiyama E, Zhou X R, Sagawa H 2013 Phys. Rev. C 87 014333Google Scholar

    [29]

    Zhang Y, Sagawa H, Hiyama E 2021 Phys. Rev. C 103 034321Google Scholar

    [30]

    Chen C F, Chen Q B, Zhou X R, Cheng Y Y, Cui J W, Schulze H J 2022 Chin. Phys. C 46 064109Google Scholar

    [31]

    Mei H, Hagino K, Yao J M 2016 Phys. Rev. C 93 011301(RGoogle Scholar

    [32]

    Gaitanos T, Lenske H 2014 Phys. Lett. B 737 256Google Scholar

    [33]

    Cheng H G, Feng Z Q 2022 Phys. Lett. B 824 136849Google Scholar

    [34]

    Ring P, Ma Z Y, Van Giai N, Vretenar D, Wandelt A, Cao L G 2001 Nucl. Phys. A 694 249Google Scholar

    [35]

    Ma Z Y, Wandelt A, Van Giai N, Vretenar D, Ring P, Cao L G 2002 Nucl. Phys. A 703 222Google Scholar

    [36]

    Paar N, Ring R, Nikšić T, Vretenar D 2003 Phys. Rev. C 67 034312Google Scholar

    [37]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [38]

    Wang Z H, Naito T, Liang H Z, Long W H 2020 Phys. Rev. C 101 064306Google Scholar

    [39]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [40]

    Kružić G, Oishi T, Vale D, Paar N 2020 Phys. Rev. C 102 044315Google Scholar

    [41]

    Chang S Y, Wang Z H, Niu Y F, Long W H 2022 Phys. Rev. C 105 034330Google Scholar

    [42]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [43]

    Roca-Maza X, Cao L G, Colo G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [44]

    Cao L G, Roca-Maza X, Colo G, Sagawa H 2015 Phys. Rev. C 92 034308Google Scholar

    [45]

    Colo G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [46]

    Cao L G, Sagawa H, Colo G 2011 Phys. Rev. C 83 034324Google Scholar

    [47]

    Wen P W, Cao L G, Margueron J, Sagawa H 2014 Phys. Rev. C 89 044311Google Scholar

    [48]

    Minato F, Hagino K 2012 Phys. Rev. C 85 024316Google Scholar

    [49]

    Lü H, Zhang S S, Zhang Z H, Wu Y Q, Liu J, Cao L G 2018 Chin. Phys. Lett. 35 062102Google Scholar

    [50]

    Serot B D, Walecka J D 1986 Advances in Nuclear Physics (Vol. 16) (New York-London: Plenum Press) pp77–105

    [51]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [52]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [53]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [54]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121–122 1

    [55]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [56]

    An R, Jiang X, Cao L G, Zhang F S 2022 Phys. Rev. C 105 014325Google Scholar

    [57]

    An R, Dong X X, Cao L G, Zhang F S 2023 Commun. Theor. Phys. 75 035301Google Scholar

    [58]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [59]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [60]

    Zhang S S, Sun B H, Zhou S G 2007 Chin. Phys. Lett. 24 1199Google Scholar

    [61]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [62]

    Zhang Y, Luo Y X, Liu Q, Guo J Y 2023 Phys. Lett. B 838 137716Google Scholar

    [63]

    Ma Z Y, Giai N V, Toki H, L’Huillier M 1997 Phys. Rev. C 55 2385Google Scholar

    [64]

    Sugahara Y, Toki H 1994 Nucl. Phys. A 579 557Google Scholar

    [65]

    Shen H, Yang F, Toki H 2006 Prog. Theor. Phys. 115 325Google Scholar

  • [1] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [2] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究. 物理学报, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [3] 袁颖. 利用超相对论量子分子动力学模型研究交变梯度同步加速器能区Au+Au碰撞中的核阻止效应. 物理学报, 2013, 62(22): 222402. doi: 10.7498/aps.62.222402
    [4] 门福殿, 何晓刚, 周勇, 宋新祥. 强磁场中超冷费米气体的相对论效应. 物理学报, 2011, 60(10): 100502. doi: 10.7498/aps.60.100502
    [5] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [6] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究. 物理学报, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [7] 荣 健, 马中玉. 200MeV以下质子-核散射的相对论微观描述. 物理学报, 2005, 54(4): 1528-1537. doi: 10.7498/aps.54.1528
    [8] 曹李刚, 刘玲, 陈宝秋, 马中玉. 稳定和不稳定核巨共振性质的相对论研究. 物理学报, 2001, 50(4): 638-643. doi: 10.7498/aps.50.638
    [9] 张靖仪. 广义相对论中双荷场源的电磁场张量. 物理学报, 1999, 48(12): 2158-2161. doi: 10.7498/aps.48.2158
    [10] 朱萍, 徐加豹, 高琴. 以改进的定域密度近似研究核子-有限核的相对论微观光学势. 物理学报, 1993, 42(1): 9-16. doi: 10.7498/aps.42.9
    [11] 马锦秀, 盛政明, 徐至展. 相对论效应对共振吸收的影响. 物理学报, 1992, 41(2): 253-259. doi: 10.7498/aps.41.253
    [12] 李国强. 热核上的isovector巨多极共振. 物理学报, 1990, 39(1): 18-23. doi: 10.7498/aps.39.18-2
    [13] 仝晓民, 李家明. 原子内壳层双光子衰变的相对论效应和屏蔽效应. 物理学报, 1989, 38(9): 1406-1412. doi: 10.7498/aps.38.1406
    [14] 汪克林. 关于超纲链方法中无规相近似的讨论. 物理学报, 1988, 37(5): 727-734. doi: 10.7498/aps.37.727
    [15] 方励之, 向守平. 广义相对论的有核多层球的结构及其稳定性. 物理学报, 1982, 31(9): 1223-1234. doi: 10.7498/aps.31.1223
    [16] 陈金全. 原子核的集体运动和准粒子无规位相近似. 物理学报, 1975, 24(4): 281-290. doi: 10.7498/aps.24.281
    [17] 吴式枢. 关于无规位相近似法与推广的组态混合法的一点注记. 物理学报, 1966, 22(4): 498-502. doi: 10.7498/aps.22.498
    [18] 吴式枢. 高阶无规位相近似法与格林函数方法. 物理学报, 1966, 22(3): 377-380. doi: 10.7498/aps.22.377
    [19] 吴式枢. 变分法与无规及高阶无规位相近似法Ⅱ. 物理学报, 1965, 21(3): 674-676. doi: 10.7498/aps.21.674
    [20] 吴式枢. 变分法与无规及高阶无规位相近似法(Ⅰ). 物理学报, 1965, 21(1): 12-18. doi: 10.7498/aps.21.12
计量
  • 文章访问数:  2147
  • PDF下载量:  59
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-11-21
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-02-20

/

返回文章
返回