搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型

陈涛 李欣

引用本文:
Citation:

太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型

陈涛, 李欣

Application of terahertz spectroscopy in identification of transgenic rapeseed oils: A support vector machine model based on modified mayfly optimization algorithm

Chen Tao, Li Xin
PDF
HTML
导出引用
  • 为实现对转基因和非转基因菜籽油的快速准确鉴别, 结合太赫兹时域光谱技术, 提出了一种基于改进蜉蝣优化算法的支持向量机模型. 以两种转基因和两种非转基因菜籽油为研究对象, 应用太赫兹时域光谱技术获取其光谱信息, 发现相比于非转基因菜籽油, 转基因菜籽油在太赫兹波段具有更强的吸收特性, 同时它们的吸收光谱极为相似, 难以通过观察法进行准确区分. 为此, 提出一种基于改进蜉蝣优化算法的支持向量机模型, 通过采用蜉蝣优化算法对支持向量机参数进行寻优, 并引入自适应惯性权重和Lévy飞行两种策略改进蜉蝣优化算法在寻优过程容易陷入局部最优解的问题, 增强蜉蝣优化算法的全局搜索能力和稳健性. 实验结果表明: 改进后的蜉蝣优化算法能够更有效地寻找到支持向量机的最优参数组合, 提升鉴别模型的整体性能, 该模型对4种菜籽油的识别精度为100%. 因此, 本研究为转基因菜籽油的类型鉴别提供了一种快速有效的新方法, 也为其他转基因物质的鉴别提供了有价值的参考.
    To achieve rapid and accurate identification of genetically modified (GM) and non-GM rapeseed oils, a support vector machine (SVM) model based on an improved mayfly optimization algorithm and coupled with the terahertz time-domain spectroscopy, is proposed. Two types of GM rapeseed oils and two types of non-GM rapeseed oils are selected as research subjects. Their spectral information is acquired by using the terahertz time-domain spectroscopy. The observations show that GM rapeseed oils exhibit stronger terahertz absorption characteristics than non-GM rapeseed oils. However, their absorption spectra are highly similar, making direct differentiation difficult through visual inspection alone. Therefore, SVM is used for spectral recognition. Considering that the classification performance of SVM is significantly affected by its parameters, the mayfly optimization algorithm is combined to optimize these parameters. Furthermore, adaptive inertia weight and Lévy flight strategies are introduced to enhance the global search capability and robustness of the mayfly optimization algorithm, thus addressing the issue of easily becoming trapped in local optima in the optimization process. Moreover, principal component analysis is used to reduce the dimensionality of the absorbance data in a 0.3–1.8 THz range, aiming to extract critical features, thereby enhancing modeling efficiency and reducing redundancy in spectral data. Experimental results demonstrate that the improved mayfly optimization algorithm effectively identifies the optimal parameter combination for SVM, thereby enhancing the overall performance of the identification model. The proposed SVM model, in which the improved mayfly optimization algorithm is used, can achieve a recognition accuracy of 100% for the four types of rapeseed oils, surpassing the 98.15% accuracy achieved by the SVM model with the original mayfly optimization algorithm. Thus, this study presents a rapid and effective new approach for identifying GM rapeseed oils and offers a valuable reference for identifying other genetically modified substances.
      通信作者: 陈涛, tchen@guet.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62261012, 61841502)资助的课题.
      Corresponding author: Chen Tao, tchen@guet.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62261012, 61841502).
    [1]

    国际农业生物技术应用服务组织 2021 中国生物工程杂志 41 114

    ISAAA 2021 China Biotechnol. 41 114

    [2]

    Kumar K, Gambhir G, Dass A, Tripathi A K, Singh A, Jha A K, Yadava P, Choudhary M, Rakshit S 2020 Planta 251 91Google Scholar

    [3]

    Demeke T, Dobnik D 2018 Anal. Bioanal. Chem. 410 4039Google Scholar

    [4]

    Gampala S S, Wulfkuhle B, Richey K A 2019 Transgenic Plants 1864 411Google Scholar

    [5]

    彭晓昱, 周欢 2021 物理学报 70 240701Google Scholar

    Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar

    [6]

    Mittleman D M 2017 J. Appl. Phys. 122 230901Google Scholar

    [7]

    Sun L, Zhao L, Peng R Y 2021 Mil. Med. Res. 8 28Google Scholar

    [8]

    胡颖, 王晓红, 郭澜涛, 张存林, 刘海波, 张希成 2005 物理学报 54 4124Google Scholar

    Hu Y, Wang X H, Guo L T, Zhang C L, Liu H B, Zhang X C 2005 Acta Phys. Sin. 54 4124Google Scholar

    [9]

    陈涛 2016 量子电子学报 33 392

    Chen T 2016 Chin. J. Quantum Electron. 33 392

    [10]

    张文涛, 李跃文, 占平平, 熊显名 2017 红外与激光工程 46 1125004Google Scholar

    Zhang W T, Li Y W, Zhan P P, Xiong X M 2017 Infrared Laser Eng. 46 1125004Google Scholar

    [11]

    Liu J J 2017 Microw. Opt. Technol. Lett. 59 654Google Scholar

    [12]

    Liu J J, Fan L L, Liu Y M, Mao L L, Kan J Q 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 206 165Google Scholar

    [13]

    Gu Q H, Chang Y X, Li X H, Chang Z Z, Feng Z D 2021 Expert Syst. Appl. 165 113713Google Scholar

    [14]

    Guo L, Xu C, Yu T H, Tuerxun W 2022 IEEE Access 10 36335Google Scholar

    [15]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273Google Scholar

    [16]

    Tuerxun W, Xu C, Guo H Y, Jin Z J, Zhou H J 2021 IEEE Access 9 69307Google Scholar

    [17]

    Zervoudakis K, Tsafarakis S 2020 Comput. Ind. Eng. 145 106559Google Scholar

    [18]

    Ding Y H, You W B 2020 IEEE Access 8 207089Google Scholar

    [19]

    Nickabadi A, Ebadzadeh M M, Safabakhsh R 2011 Appl. Soft Comput. 11 3658Google Scholar

    [20]

    Syama S, Ramprabhakar J, Anand R, Guerrero J M 2023 Results Eng. 19 101274Google Scholar

    [21]

    Liu N, Luo F, Ding W C 2019 2019 IEEE Symposium Series on Computational Intelligence (SSCI) Xiamen, China, December 6–9, 2019 p3104

    [22]

    Pan P Y, Xing Y H, Zhang D W, Wang J, Liu C L, Wu D, Wang X Y 2023 J. Food Sci. 88 3189Google Scholar

    [23]

    Elahi N, Duncan R W, Stasolla C 2016 Plant Physiol. Biochem. 100 52Google Scholar

  • 图 1  THz-TDS系统原理图

    Fig. 1.  Schematic diagram of THz-TDS system.

    图 2  360个菜籽油样本的THz时域光谱

    Fig. 2.  THz time-domain spectra of 360 rapeseed oil samples.

    图 3  4种菜籽油及参考信号的THz时域光谱

    Fig. 3.  THz time-domain spectra of four types of rapeseed oils and reference signal.

    图 4  4种菜籽油及参考信号的THz频域光谱

    Fig. 4.  THz frequency-domain spectra of four types of rapeseed oils and reference signal.

    图 5  360个菜籽油样本在0.3—1.8 THz波段内的吸光度谱

    Fig. 5.  Absorption spectra of 360 rapeseed oil samples in the 0.3—1.8 THz range.

    图 6  4种菜籽油在0.3—1.8 THz波段内的平均吸光度谱

    Fig. 6.  Average absorption spectra of four types of rapeseed oils in the 0.3–1.8 THz range.

    图 7  吸光度的主成分方差贡献率变化条形图

    Fig. 7.  Bar chart of variance contribution rates for absorbance’s principal components.

    图 8  吸光度前3个主成分的3D散点图

    Fig. 8.  3D scatter plot of the first three principal components of absorbance.

    图 9  两种算法下SVM参数寻优过程中的适应度变化曲线 (a) MOA; (b) ALMOA

    Fig. 9.  Fitness evolution curves during SVM parameter optimization process for two algorithms: (a) MOA; (b) ALMOA.

    图 10  两种模型的分类结果混淆矩阵 (a) MOA-SVM模型; (b) ALMOA-SVM模型

    Fig. 10.  Confusion matrices of the classification results for the two models: (a) MOA-SVM model; (b) ALMOA-SVM model.

    表 1  实验样品信息

    Table 1.  The information of experimental sample.

    标识符 品牌 类型 样本数
    训练集 测试集
    Non-GMO1 道道全 非转基因 63 27
    Non-GMO2 鲁花 非转基因 63 27
    GMO1 金龙鱼 转基因 63 27
    GMO2 鄉佬坎 转基因 63 27
    下载: 导出CSV

    表 2  两种算法的SVM参数寻优结果

    Table 2.  Results of SVM parameter optimization under two algorithms.

    优化算法最佳适应度/%参数
    cg
    MOA97.2212.420.79
    ALMOA98.4184.620.12
    下载: 导出CSV

    表 3  MOA-SVM模型与ALMOA-SVM模型的性能评价

    Table 3.  Performance evaluation of the MOA-SVM model and ALMOA-SVM model.

    模型样品查全率/%查准率/%精度/%
    MOA-SVMNon-GMO110096.4398.15
    Non-GMO292.59100
    GMO110096.43
    GMO2100100
    ALMOA-SVMNon-GMO1100100100
    Non-GMO2100100
    GMO1100100
    GMO2100100
    下载: 导出CSV
  • [1]

    国际农业生物技术应用服务组织 2021 中国生物工程杂志 41 114

    ISAAA 2021 China Biotechnol. 41 114

    [2]

    Kumar K, Gambhir G, Dass A, Tripathi A K, Singh A, Jha A K, Yadava P, Choudhary M, Rakshit S 2020 Planta 251 91Google Scholar

    [3]

    Demeke T, Dobnik D 2018 Anal. Bioanal. Chem. 410 4039Google Scholar

    [4]

    Gampala S S, Wulfkuhle B, Richey K A 2019 Transgenic Plants 1864 411Google Scholar

    [5]

    彭晓昱, 周欢 2021 物理学报 70 240701Google Scholar

    Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar

    [6]

    Mittleman D M 2017 J. Appl. Phys. 122 230901Google Scholar

    [7]

    Sun L, Zhao L, Peng R Y 2021 Mil. Med. Res. 8 28Google Scholar

    [8]

    胡颖, 王晓红, 郭澜涛, 张存林, 刘海波, 张希成 2005 物理学报 54 4124Google Scholar

    Hu Y, Wang X H, Guo L T, Zhang C L, Liu H B, Zhang X C 2005 Acta Phys. Sin. 54 4124Google Scholar

    [9]

    陈涛 2016 量子电子学报 33 392

    Chen T 2016 Chin. J. Quantum Electron. 33 392

    [10]

    张文涛, 李跃文, 占平平, 熊显名 2017 红外与激光工程 46 1125004Google Scholar

    Zhang W T, Li Y W, Zhan P P, Xiong X M 2017 Infrared Laser Eng. 46 1125004Google Scholar

    [11]

    Liu J J 2017 Microw. Opt. Technol. Lett. 59 654Google Scholar

    [12]

    Liu J J, Fan L L, Liu Y M, Mao L L, Kan J Q 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 206 165Google Scholar

    [13]

    Gu Q H, Chang Y X, Li X H, Chang Z Z, Feng Z D 2021 Expert Syst. Appl. 165 113713Google Scholar

    [14]

    Guo L, Xu C, Yu T H, Tuerxun W 2022 IEEE Access 10 36335Google Scholar

    [15]

    Cortes C, Vapnik V 1995 Mach. Learn. 20 273Google Scholar

    [16]

    Tuerxun W, Xu C, Guo H Y, Jin Z J, Zhou H J 2021 IEEE Access 9 69307Google Scholar

    [17]

    Zervoudakis K, Tsafarakis S 2020 Comput. Ind. Eng. 145 106559Google Scholar

    [18]

    Ding Y H, You W B 2020 IEEE Access 8 207089Google Scholar

    [19]

    Nickabadi A, Ebadzadeh M M, Safabakhsh R 2011 Appl. Soft Comput. 11 3658Google Scholar

    [20]

    Syama S, Ramprabhakar J, Anand R, Guerrero J M 2023 Results Eng. 19 101274Google Scholar

    [21]

    Liu N, Luo F, Ding W C 2019 2019 IEEE Symposium Series on Computational Intelligence (SSCI) Xiamen, China, December 6–9, 2019 p3104

    [22]

    Pan P Y, Xing Y H, Zhang D W, Wang J, Liu C L, Wu D, Wang X Y 2023 J. Food Sci. 88 3189Google Scholar

    [23]

    Elahi N, Duncan R W, Stasolla C 2016 Plant Physiol. Biochem. 100 52Google Scholar

  • [1] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, 2024, 73(19): 193201. doi: 10.7498/aps.73.20240944
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [5] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [6] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [7] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究. 物理学报, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [8] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [9] 宋丹, 樊晓平, 刘钟理. 一种基于非基因信息的免疫记忆优化算法. 物理学报, 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [10] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [11] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [12] 高文, 汤洋, 朱明. 复杂背景下目标检测的级联分类器算法研究. 物理学报, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [13] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [14] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [15] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [16] 陈扬, 贾丽萍, 张太宁, 郭澎, 王湘晖, 常胜江. 用于光谱分类的光谱峰谷沿匹配算法. 物理学报, 2010, 59(1): 271-280. doi: 10.7498/aps.59.271
    [17] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [18] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [19] 王卫宁, 李元波, 岳伟伟. 组氨酸和精氨酸的太赫兹光谱研究. 物理学报, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [20] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
计量
  • 文章访问数:  2799
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-22
  • 上网日期:  2023-12-13
  • 刊出日期:  2024-03-05

/

返回文章
返回