搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率垂直腔面发射激光器阵列热特性

闫观鑫 郝永芹 张秋波

引用本文:
Citation:

高功率垂直腔面发射激光器阵列热特性

闫观鑫, 郝永芹, 张秋波

Thermal characteristics of high-power vertical cavity surface emitting laser array

Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo
PDF
HTML
导出引用
  • 为了改善垂直腔面发射激光器(VCSEL )阵列的热特性, 提高器件的可靠性, 本文基于有限元模型, 研究了不同单元间距、排布方式对阵列器件的热串扰现象、热扩散性能的影响. 在理论分析的基础上, 制备了几种不同排布方式的VCSEL 阵列器件, 并对其进行测试分析. 结果显示, 相较于正方形排布方式, 新型排布方式器件具有更高的输出功率, 同时阈值电流也有所降低. 其中五边形排布方式的器件表现出最佳的性能, 其输出功率高达150 mW, 比正方形排布方式提高了约73%. 这表明通过调整阵列单元的间距、排列方式, 可以使各单元间的热串扰现象得到有效改善, 降低器件的热效应, 进而降低器件温度, 提高输出特性.
    Due to the excellent characteristics such as good beam quality, dynamic single-longitudinal mode, low power consumption, and good wavelength stability, especially easy-to-integrate high-density 2D area arrays, vertical-cavity surface-emitting laser (VCSEL) is widely used in optical identification, optical interconnection systems, optical data storage and other fields. In recent years, with the improvement of materials and process technology, VCSEL has played an increasingly important role in the fields of smartphone face recognition, drone obstacle avoidance, virtual reality/augmented reality (VR/AR), sweeping robots, home cameras, etc., and with the rapid development and application of 5G communication, VCSEL will become an indispensable main component. However, due to the introduction of distributed Bragg mirrors, the thermal effect of VCSEL is very serious, especially when VCSEL is integrated into an array device, current-induced self-heating of each individual array cell and the thermal coupling among array cells have become the major factors contributing to thermal rollover and hence restraining the optical output performance of the VCSEL arrays. Therefor it is of great significance to study the thermal characteristics of VCSELs, in order to solve the problem of thermal crosstalk between single-tube devices, and increase the life of the device. This paper analyzes the influence of cell spacing and arrangement on the thermal crosstalk phenomenon and thermal diffusion performance of VCSEL array device based on the finite element model. The simulation results show that the maximum temperature of the device decays exponentially with the increase of cell spacing, the thermal crosstalk phenomenon and thermal diffusion performance of VCSEL array devices are significantly improved. When the cell spacing is 120 μm, the influence between the cells is small, the thermal crosstalk phenomenon is significantly improved, and the heat dissipation effect is better. On this basis, four non-square VCSEL arrays with 16 cells are designed, and it can be seen that compared with the square arrangement, the isosceles triangle, pentagonal and hexagonal configurations have improved the thermal crosstalk phenomenon and thermal diffusion performance, and the overall temperature rise of the VCSEL array is significantly reduced. The thermal crosstalk phenomenon of the pentagonal arrangement is significantly improved, and the device temperature is 37.32 ℃, which is the best effect among several arrangement methods. According to the results of theoretical simulation, the VCSEL array devices with different arrangements are prepared and characterized on the same epitaxial wafer by the same process. From the P-I-V characteristic curves, it can be seen that the threshold currents of isosceles triangles, pentagons and hexagons are lower than those of the square arrangement, and the maximum output power is higher than that of the square arrangement, especially the maximum output power value of the pentagonal is 150 mW. The results show that the new arrangement can effectively improve the thermal crosstalk phenomenon between the cells, increase the output power of the device, and make the VCSEL array device have good optoelectronic and thermal characteristics.
      通信作者: 郝永芹, hyq72081220@aliyun.com
    • 基金项目: 吉林省科技发展计划(批准号: 20200401073GX)资助的课题.
      Corresponding author: Hao Yong-Qin, hyq72081220@aliyun.com
    • Funds: Project supported by the Science and Technology Development Plan of Jilin Province, China (Grant No. 20200401073GX).
    [1]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [2]

    Iga K 2018 Jpn. J. Appl. Phys. 57 08PA01Google Scholar

    [3]

    Inoue S, Nishimura S, Nakahama M, Matsutani A, Sakaguchi T, Koyama F 2018 Jpn. J. Appl. Phys. 57 040308Google Scholar

    [4]

    Kuramoto M, Kobayashi S, Akagi T, Tazawa K, Tanaka K, Nakata K, Saito T 2019 Appl. Phys. Express 12 091004Google Scholar

    [5]

    高亮 2014 硕士学位论文 (长春: 长春理工大学)

    Gao L 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology

    [6]

    赵秦丰 2020 硕士学位论文 (西安: 中国科学院大学)

    Zhao Q Y 2020 M. S. Thesis (Xi’an: University of Chinese Academy of Sciences

    [7]

    张秋波2020硕士学位论文 (长春: 长春理工大学)

    Zhang Q B 2020 M. S. Thesis (Changchun: Changchun University of Science and Technology

    [8]

    Nakwaski W, Osinski M 1991 IEEE J. Quantum Elect. 27 1391Google Scholar

    [9]

    Chen G, Hadley M A, Smith J S 1994 J. Appl. Phys. 76 3261Google Scholar

    [10]

    Choi J H, Wang L, Bi H, Chen R T 2006 IEEE J Sel. Top Quant. 12 1060Google Scholar

    [11]

    Desgreys P, Karray M, Charlot J, Charlot, Herve Y 2002 Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation Santa Rosa, CA, USA, 2002 pp123–126

    [12]

    Moench H, Dumoulin R, Gronenborn S, Gu X, Heusler G, Kolb J, Miller M, Pekarski P, Pollmann-Retsch J, Pruijmboom A, Stroesser M 2012 SPIE 8276 9Google Scholar

    [13]

    Wang J, Savidis I, Friedman E G 2011 Microelectronics J. 42 820Google Scholar

    [14]

    Zhong C Y, Zhang X, Liu D, Ning Y Q, Wang L J 2017 Chin. Phys. B 26 064204Google Scholar

    [15]

    Zhong C, Zhang X, Hofmann W, Ning Y Q, Wang L J 2018 IEEE Photon. J. 10 1504608Google Scholar

    [16]

    Pan G Z, Xie Y Y, Xu C, Wang Q H, Dong Y B, Deng J, Chen H D, Sun J 2019 IEEE Photonic Tech. L. 31 1647Google Scholar

    [17]

    Gao Z H, Thompson B J, Ragunathan G, Johnson M T, Rout B, Choquette K D IEEE Photonic Tech. L. 28 513–515

    [18]

    Amann M C, Hofmann W 2009 IEEE J Sel. Top Quant. 15 861Google Scholar

    [19]

    Jin D Y, Yang S M, Zhang F, Wu L, Guan B L, Yang Y Q, Zhang W R 2022 IEEE Trans. Electron Devices 69 3761Google Scholar

    [20]

    Liu Y Y, Huang Y W, Zhong C Y, Zhang X, Zhang J W, Hofmann W, Ning Y Q, Wang L J 2019 Optik 186 443Google Scholar

    [21]

    Wang C, Li C, Dai J 2019 Opt. Quantum Electron 51 1Google Scholar

    [22]

    Qin Y X, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

  • 图 1  简化后的VCSEL结构图

    Fig. 1.  Simplified VCSEL structure.

    图 2  不同单元间距的正方形VCSEL阵列的表面温度分布 (a) d = 80 μm; (b) d = 100 μm; (c) d = 120 μm; (d) d = 140 μm

    Fig. 2.  Surface temperature distribution of square VCSEL arrays with different mesa spacings: (a) d = 80 μm; (b) d = 100 μm; (c) d = 120 μm; (d) d = 140 μm.

    图 3  不同单元间距下VCSEL阵列的最高温度

    Fig. 3.  Maximum temperature of VCSEL arrays under different mesa spacings.

    图 4  不同排布方式VCSEL阵列温度分布图 (a) 正方形; (b) 等边三角形; (c) 等腰三角形; (d) 五边形; (e) 环形

    Fig. 4.  Temperature distribution of VCSEL arrays with different arrangements: (a) Square; (b) equilateral triangle; (c) isosceles triangle; (d) pentagon; (e) circular.

    图 5  不同排布方式VCSEL阵列器件的近场效果图 (a)正方形; (b) 等腰三角形; (c) 五边形; (d) 环形

    Fig. 5.  Near fields of VCSEL arrays with different arrangements: (a) Square; (b) isosceles triangle; (c) pentagon; (d) circular.

    图 6  不同排布方式VCSEL阵列器件的P-I-V曲线

    Fig. 6.  P-I-V curve of VCSEL array devices with different arrangements.

    表 1  模拟中采用的外延片结构参数和热参数

    Table 1.  Structural and thermal parameters of epitaxial wafers used in simulation.

    各层参数 材料 热导率 κ/
    (W·(cm·K)–1)
    厚度/μm
    P-DBR层(对) Al0.9GaAs/
    Al0.22GaAs
    0.5 3.479
    有源层 Al0.3GaAs/
    Al0.6GaAs
    0.185 0.2373
    N-DBR层(对) Al0.9GaAs/
    Al0.22GaAs
    0.499 5.6408
    衬底层 GaAs 0.55 150
    欧姆接触层(N) Au-Ge-Ni 0.44 0.2
    In焊料层 In 0.82 3
    Cu热沉 Cu 3.98 1000
    下载: 导出CSV
  • [1]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [2]

    Iga K 2018 Jpn. J. Appl. Phys. 57 08PA01Google Scholar

    [3]

    Inoue S, Nishimura S, Nakahama M, Matsutani A, Sakaguchi T, Koyama F 2018 Jpn. J. Appl. Phys. 57 040308Google Scholar

    [4]

    Kuramoto M, Kobayashi S, Akagi T, Tazawa K, Tanaka K, Nakata K, Saito T 2019 Appl. Phys. Express 12 091004Google Scholar

    [5]

    高亮 2014 硕士学位论文 (长春: 长春理工大学)

    Gao L 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology

    [6]

    赵秦丰 2020 硕士学位论文 (西安: 中国科学院大学)

    Zhao Q Y 2020 M. S. Thesis (Xi’an: University of Chinese Academy of Sciences

    [7]

    张秋波2020硕士学位论文 (长春: 长春理工大学)

    Zhang Q B 2020 M. S. Thesis (Changchun: Changchun University of Science and Technology

    [8]

    Nakwaski W, Osinski M 1991 IEEE J. Quantum Elect. 27 1391Google Scholar

    [9]

    Chen G, Hadley M A, Smith J S 1994 J. Appl. Phys. 76 3261Google Scholar

    [10]

    Choi J H, Wang L, Bi H, Chen R T 2006 IEEE J Sel. Top Quant. 12 1060Google Scholar

    [11]

    Desgreys P, Karray M, Charlot J, Charlot, Herve Y 2002 Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation Santa Rosa, CA, USA, 2002 pp123–126

    [12]

    Moench H, Dumoulin R, Gronenborn S, Gu X, Heusler G, Kolb J, Miller M, Pekarski P, Pollmann-Retsch J, Pruijmboom A, Stroesser M 2012 SPIE 8276 9Google Scholar

    [13]

    Wang J, Savidis I, Friedman E G 2011 Microelectronics J. 42 820Google Scholar

    [14]

    Zhong C Y, Zhang X, Liu D, Ning Y Q, Wang L J 2017 Chin. Phys. B 26 064204Google Scholar

    [15]

    Zhong C, Zhang X, Hofmann W, Ning Y Q, Wang L J 2018 IEEE Photon. J. 10 1504608Google Scholar

    [16]

    Pan G Z, Xie Y Y, Xu C, Wang Q H, Dong Y B, Deng J, Chen H D, Sun J 2019 IEEE Photonic Tech. L. 31 1647Google Scholar

    [17]

    Gao Z H, Thompson B J, Ragunathan G, Johnson M T, Rout B, Choquette K D IEEE Photonic Tech. L. 28 513–515

    [18]

    Amann M C, Hofmann W 2009 IEEE J Sel. Top Quant. 15 861Google Scholar

    [19]

    Jin D Y, Yang S M, Zhang F, Wu L, Guan B L, Yang Y Q, Zhang W R 2022 IEEE Trans. Electron Devices 69 3761Google Scholar

    [20]

    Liu Y Y, Huang Y W, Zhong C Y, Zhang X, Zhang J W, Hofmann W, Ning Y Q, Wang L J 2019 Optik 186 443Google Scholar

    [21]

    Wang C, Li C, Dai J 2019 Opt. Quantum Electron 51 1Google Scholar

    [22]

    Qin Y X, Li W, Liu S P, Ma X Y 2019 J. Appl. Phys. 126 193101Google Scholar

  • [1] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [2] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [3] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [4] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [5] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [6] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [7] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [8] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [9] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [10] 周晓凤, 戚祖敏, 罗向前, 刘长安, 朱建辉, 王泽华, 张轶, 訾彦勇. 利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法. 物理学报, 2017, 66(8): 084201. doi: 10.7498/aps.66.084201
    [11] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [12] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [13] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [14] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [15] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [16] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [17] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  1996
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-30
  • 上网日期:  2023-12-05
  • 刊出日期:  2024-03-05

/

返回文章
返回