搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁等离子体发动机中磁喷管分离过程的流体模拟

杨振宇 张元哲 范威 杨广杰 韩先伟

引用本文:
Citation:

磁等离子体发动机中磁喷管分离过程的流体模拟

杨振宇, 张元哲, 范威, 杨广杰, 韩先伟

Fluid simulation for detachment process in magnetic nozzle of magnetoplasma rocket engine

Yang Zhen-Yu, Zhang Yuan-Zhe, Fan Wei, Yang Guang-Jie, Han Xian-Wei
PDF
HTML
导出引用
  • 磁等离子体发动机在深空探测、载人航天等领域具备广阔的应用前景. 发动机的磁喷管单元将离子能量转化为轴向动能, 对磁喷管中等离子体与磁场分离的物理过程开展研究对提升发动机推进效率具有重要意义. 本文建立了针对磁等离子体发动机中磁喷管的流体数值模型, 并在不同入口离子温度、背景磁场条件下开展了数值模拟. 计算结果表明: 等离子体向下游运动的过程中轴向速度增大, 并与磁力线逐渐分离, 绝热性损失分离机制在分离过程中起主导作用; 入口离子温度升高, 离子轴向速度增大, 离子与磁场分离位置更靠上游, 但不会对阻性分离过程产生影响; 背景磁场增强, 下游离子速度减小, 流线与对称轴的夹角减小, 各种分离机制中绝热性损失分离机制仍起主要作用.
    Magnetoplasma rocket engine has a broad application prospect in the deep space exploration, manned space flight and other space missions. The ion energy is converted into the directed velocity in the magnetic nozzle of the engine. The investigation into the detachment process of the plasma with the magnetic field is of great significance for improving the engine propulsion efficiency. However, there are roughly five kinds of physical mechanisms which can all contribute to the detachment process and make the detachment in the magnetic nozzle quite complicated. Furthermore, the ion temperature is much higher than the electron temperature in the magnetic nozzle of the magnetoplasma rocket engine due to the heating effect of the ion cyclotron resonance stage. As a result, previous numerical model which were based on the assumption of cold ions are unapplicable for the simulation of the engine. In this work, a fluid simulation model is developed which is used for simulating the magnetic nozzle in the magnetoplasma rocket engine. The model includes the electron and the ion of single charge. For the characteristics of the magnetoplasma rocket engine, the ion energy equation is added into the governing equations. In order to analyze the effect of the inertial detachment, the static electric field due to the charge separation is also included. The simulations are performed under the conditions of different inlet ion temperatures and background magnetic fields. The results show that the ion axial velocity gradually increases in the magnetic nozzle and the ion stream lines detach from the magnetic field lines gradually. The loss of adiabaticity is the dominant mechanism in the detachment process. The ion axial velocity increases with the inlet ion temperature rising, and the ion streamlines detach earlier from the magnetic field lines. The resistive diffusion is unaffected by the inlet ion temperature while the detachment interfaces of other three mechanisms all move toward the upstream. With the increase of the background magnetic field, ion axial velocity decreases and the angle included between the streamline and the axis becomes smaller. The loss of adiabaticity is still the dominant physical mechanism when the magnetic field is changed.
      通信作者: 韩先伟, hxwmpt@sina.com
      Corresponding author: Han Xian-Wei, hxwmpt@sina.com
    [1]

    于达仁, 乔磊, 蒋文嘉 刘辉 2020 推进技术 41 1Google Scholar

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Technol. 41 1Google Scholar

    [2]

    Chang F R, Fisher J L 1982 Nucl. Fusion 22 8Google Scholar

    [3]

    Chang F R, Giambusso M, Corrigan A M H, Dean L O, Warrayat M F 2022 37th International Electric Propulsion Conference Cambridge, USA, June 19–23, 2022 pp1–10

    [4]

    龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正 2018 物理学报 67 011901Google Scholar

    Long J F, Zhang T P, Yang W, Sun M M, Jia Y H, Liu M Z 2018 Acta Phys. Sin. 67 011901Google Scholar

    [5]

    段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟 2013 物理学报 62 205205Google Scholar

    Duan P, Cao A N, Shen H J, Zhou X W, Qin H J, Liu J Y, Qing S W 2013 Acta Phys. Sin. 62 205205Google Scholar

    [6]

    Longmier B, Squire J, Olsen C 2012 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 29–August 1, 2012 pp1–14

    [7]

    张海亮, 张天平, 王涛 2018 真空与低温 24 4Google Scholar

    Zhang H L, Zhang T P, Wang T 2018 Vac. Cryogen. 24 4Google Scholar

    [8]

    Ramos J J, Merino M, Ahedo E 2018 Phys. Plasmas 25 061206Google Scholar

    [9]

    Merino M, Nuez J, Ahedo E 2021 Plasma Sources Sci. Technol. 30 115006Google Scholar

    [10]

    Little J M, Choueiri E Y 2010 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 pp1–14

    [11]

    Moses R W, Gerwin R A, Schoenberg K F 1992 AIP Conf. Proc. 246 1293Google Scholar

    [12]

    Merino M, Ahedo E 2011 Phys. Plasmas 18 053504Google Scholar

    [13]

    Dimov G I, Taskaev S Y 2000 27th EPS Conference on Control Fusion and Plasma Physics Budapest, June 12–16, 2000 pp464–467

    [14]

    Ahedo E, Merino M 2010 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 pp1–12

    [15]

    Merino M, Ahedo E 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, California, July 31–August 3, 2011 pp1–11

    [16]

    Hooper E B 1993 J. Propul. Power 9 758

    [17]

    Arefiev A V, Breizman B N 2005 Phys. Plasmas 12 043504Google Scholar

    [18]

    Little J M, Choueiri E Y 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, California, July 31–August 3, 2011 pp1–12

    [19]

    Ilin A V, Chang F R, Squire J P, Tarditi A G 2002 40th AIAA Aerospace Sciences Meeting & Exhibit Reno, NV, January 14–17, 2002 pp1–11

    [20]

    Longmier B W, Cassady L D, Ballenger M G, Cater M D, CHANG F R, Glover T W, Ilin A V, McCaskill G E, Olsen C S, Squire J P 2011 J. Propul. Power 27 915Google Scholar

    [21]

    Olsen C S, Ballenger M G, Carter M D, Chang Díaz F R, Giambusso M, Glover T W, Ilin A V, Squire J P, Longmier B W, Bering E A, Cloutier P A 2015 IEEE Trans. Plasma Sci. 43 252Google Scholar

    [22]

    赵转转 2019 硕士学位论文 (大连: 大连理工大学)

    Zhang Z Z 2019 M. S. Thesis (Dalian: Dalian University of Technology

    [23]

    Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations

    [24]

    Wu M Y, Xiao C J, Liu Y, Xu M, Tan C 2022 Plasma Sci. Technol. 24 055002Google Scholar

    [25]

    Lafleur T, Cannat F, Jarrige J, Elias P Q, Packan D 2015 Plasma Sources Sci. Technol. 24 065013Google Scholar

  • 图 1  磁等离子体发动机示意图

    Fig. 1.  Schematic of the magnetoplasma rocket engine.

    图 2  几何模型示意图

    Fig. 2.  Schematic of the geometric model.

    图 3  磁场强度分布图

    Fig. 3.  Distribution of the magnetic field intensity.

    图 4  稳态离子参数分布 (a)离子密度; (b)离子温度

    Fig. 4.  Distribution of the ion parameters in steady state: (a) Ion density; (b) ion temperature.

    图 5  稳态离子速度分布 (a) ui, z; (b) ui, r

    Fig. 5.  Distribution of the ion velocity in steady state: (a) ui, z; (b) ui, r.

    图 6  离子流线图

    Fig. 6.  Streamlines of the ion.

    图 7  不同分离机制的无量纲参数分布 (a) Rm; (b) α; (c) ζ; (d) βf

    Fig. 7.  Distribution of the dimensionless parameters with different detachment mechanisms: (a) Rm; (b) α; (c) ζ; (d) βf.

    图 8  离子温度分布 (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV

    Fig. 8.  Distribution of the ion temperature: (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV.

    图 9  离子轴向速度ui,z分布 (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV

    Fig. 9.  Distribution of the ion axial velocity ui,z: (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV.

    图 10  Ti,in = 40 eV不同分离机制的无量纲参数分布 (a) Rm; (b) α; (c) ζ; (d) βf

    Fig. 10.  Distribution of the dimensionless parameters with different detachment mechanisms when Ti,in = 40 eV: (a) Rm; (b) α; (c) ζ; (d) βf.

    图 11  不同Ti, inα分布 (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV

    Fig. 11.  Distribution of α with different Ti, in: (a) Ti, in = 10 eV; (b) Ti, in = 20 eV; (c) Ti, in = 40 eV; (d) Ti, in = 80 eV

    图 12  离子轴向速度ui, z分布 (a) fB = 0.1; (b) fB = 0.4

    Fig. 12.  Distribution of the ion axial velocity ui, z: (a) fB = 0.1; (b) fB = 0.4.

    图 13  fB = 0.1不同分离机制的无量纲参数分布 (a) Rm; (b) α; (c) ζ; (d) βf

    Fig. 13.  Distribution of the dimensionless parameters with different detachment mechanisms when fB = 0.1: (a) Rm; (b) α; (c) ζ; (d) βf.

    表 1  不同物理机制的特征参数

    Table 1.  Characteristic parameters of the physical mechanisms.

    物理机制 无量纲系数 分离判据
    绝热性损失分离 $ \alpha = {r_{\text{L}}}\dfrac{{\left| {\nabla B} \right|}}{{\left| B \right|}} $ 不满足$ \alpha \ll 1 $
    阻性扩散分离 $ {R_{\text{m}}} = \dfrac{{\mu L{V_{\text{A}}}}}{\eta } $ $ 1 < {R_{\text{m}}} < 1000 $
    惯性分离 $ G = \dfrac{{{\text{e}}B}}{{{m_{\text{e}}}}}\dfrac{{{\text{e}}B}}{{{m_{\text{i}}}}}\dfrac{{{L^2}}}{{{U^2}}} $ $ \xi = {G^{ - 1/2}}\left| {\dfrac{{\nabla B}}{B}} \right| \approx 0.5 $
    超阿尔芬速度分离 $ {\beta _{\text{f}}} = \dfrac{{\rho {u^2}}}{{{{{B^2}} \mathord{\left/ {\vphantom {{{B^2}} \mu }} \right. } \mu }}} $ $ {\beta _{\text{f}}} > 1 $
    下载: 导出CSV

    表 2  模型几何参数

    Table 2.  Geometric parameters of the model.

    参数值/m参数值/m
    rend0.8dr0.01
    zend1.2dz0.02
    r00.12z00.2
    下载: 导出CSV
  • [1]

    于达仁, 乔磊, 蒋文嘉 刘辉 2020 推进技术 41 1Google Scholar

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Technol. 41 1Google Scholar

    [2]

    Chang F R, Fisher J L 1982 Nucl. Fusion 22 8Google Scholar

    [3]

    Chang F R, Giambusso M, Corrigan A M H, Dean L O, Warrayat M F 2022 37th International Electric Propulsion Conference Cambridge, USA, June 19–23, 2022 pp1–10

    [4]

    龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正 2018 物理学报 67 011901Google Scholar

    Long J F, Zhang T P, Yang W, Sun M M, Jia Y H, Liu M Z 2018 Acta Phys. Sin. 67 011901Google Scholar

    [5]

    段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟 2013 物理学报 62 205205Google Scholar

    Duan P, Cao A N, Shen H J, Zhou X W, Qin H J, Liu J Y, Qing S W 2013 Acta Phys. Sin. 62 205205Google Scholar

    [6]

    Longmier B, Squire J, Olsen C 2012 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 29–August 1, 2012 pp1–14

    [7]

    张海亮, 张天平, 王涛 2018 真空与低温 24 4Google Scholar

    Zhang H L, Zhang T P, Wang T 2018 Vac. Cryogen. 24 4Google Scholar

    [8]

    Ramos J J, Merino M, Ahedo E 2018 Phys. Plasmas 25 061206Google Scholar

    [9]

    Merino M, Nuez J, Ahedo E 2021 Plasma Sources Sci. Technol. 30 115006Google Scholar

    [10]

    Little J M, Choueiri E Y 2010 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 pp1–14

    [11]

    Moses R W, Gerwin R A, Schoenberg K F 1992 AIP Conf. Proc. 246 1293Google Scholar

    [12]

    Merino M, Ahedo E 2011 Phys. Plasmas 18 053504Google Scholar

    [13]

    Dimov G I, Taskaev S Y 2000 27th EPS Conference on Control Fusion and Plasma Physics Budapest, June 12–16, 2000 pp464–467

    [14]

    Ahedo E, Merino M 2010 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 pp1–12

    [15]

    Merino M, Ahedo E 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, California, July 31–August 3, 2011 pp1–11

    [16]

    Hooper E B 1993 J. Propul. Power 9 758

    [17]

    Arefiev A V, Breizman B N 2005 Phys. Plasmas 12 043504Google Scholar

    [18]

    Little J M, Choueiri E Y 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, California, July 31–August 3, 2011 pp1–12

    [19]

    Ilin A V, Chang F R, Squire J P, Tarditi A G 2002 40th AIAA Aerospace Sciences Meeting & Exhibit Reno, NV, January 14–17, 2002 pp1–11

    [20]

    Longmier B W, Cassady L D, Ballenger M G, Cater M D, CHANG F R, Glover T W, Ilin A V, McCaskill G E, Olsen C S, Squire J P 2011 J. Propul. Power 27 915Google Scholar

    [21]

    Olsen C S, Ballenger M G, Carter M D, Chang Díaz F R, Giambusso M, Glover T W, Ilin A V, Squire J P, Longmier B W, Bering E A, Cloutier P A 2015 IEEE Trans. Plasma Sci. 43 252Google Scholar

    [22]

    赵转转 2019 硕士学位论文 (大连: 大连理工大学)

    Zhang Z Z 2019 M. S. Thesis (Dalian: Dalian University of Technology

    [23]

    Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations

    [24]

    Wu M Y, Xiao C J, Liu Y, Xu M, Tan C 2022 Plasma Sci. Technol. 24 055002Google Scholar

    [25]

    Lafleur T, Cannat F, Jarrige J, Elias P Q, Packan D 2015 Plasma Sources Sci. Technol. 24 065013Google Scholar

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [3] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [5] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [6] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究. 物理学报, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [7] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究. 物理学报, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [8] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [9] 高书涵, 王绪成, 张远涛. 脉冲调制条件下介质阻挡特高频放电特性的数值模拟. 物理学报, 2020, 69(11): 115204. doi: 10.7498/aps.69.20191853
    [10] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [13] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [14] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [15] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [16] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [17] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [18] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 李家全. 磁阱中的低温等离子体. 物理学报, 1980, 29(11): 1471-1478. doi: 10.7498/aps.29.1471
计量
  • 文章访问数:  2030
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2024-03-20
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回