搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外二区小动物活体荧光成像系统的研制

邬丹丹 潘力 周哲 付威威 朱海龙 董月芳

引用本文:
Citation:

近红外二区小动物活体荧光成像系统的研制

邬丹丹, 潘力, 周哲, 付威威, 朱海龙, 董月芳

Development of NIR-II small animal living fluorescence imaging system

Wu Dan-Dan, Pan Li, Zhou Zhe, Fu Wei-Wei, Zhu Hai-Long, Dong Yue-Fang
PDF
HTML
导出引用
  • 近年来, 小动物活体荧光成像系统被广泛应用于生物医学成像研究. 但是, 现有的荧光成像系统存在穿透深度有限、图像信噪比低等缺点. 因此, 利用近红外二区(near-infrared-II, NIR-II, 900—1880 nm)荧光成像技术在生物组织中具有的低吸收、低散射和穿透深度深等优点, 研制出一套NIR-II小动物活体荧光成像系统, 提出了一种荧光图像增强校正方法, 并设计生物组织模拟实验和活体动物实验测试该系统的性能和成像效果. 实验结果表明, 该系统具有穿透深度深、信噪比高、灵敏度高等优点. 结合商用的吲哚菁绿试剂和聚集诱导发光染料, 该系统可实时监测小鼠体内的血管分布情况, 并对深层组织器官进行持续监测, 实现活体小鼠清醒状态下的动态监测研究, 有助于推动生物医学成像领域的肿瘤研究和药物开发研究等进入一个新阶段.
    Fluorescence imaging technology can dynamically monitor gene and cell changing in live animals in real-time, with advantages such as high sensitivity, high resolution, and non-invasion. In recent years, it has been widely used in tumor research, gene expression research, drug development research, etc. The imaging wavelength of traditional fluorescence imaging technology falls in the visible and near-infrared-I region. Due to the absorption and scattering effects of light propagation in biological tissues, and the inherent fluorescence of biological tissues, traditional fluorescence imaging techniques still have significant limitations in penetration depth and image signal-to-noise ratio. In this work, a highly integrated near-infrared-II (NIR-II, 900—1880 nm) small animal living fluorescence imaging system is developed by taking the advantages of NIR-II fluorescence imaging technology, such as low absorption, low scattering, and deep penetration depth in biological tissues. And a method of enhancing and correcting fluorescence image is proposed to optimize fluorescence images. In this work, the biological tissue simulation experiments and live animal experiments are conducted to test the performance and imaging effect of the system. The experimental results show that the system has the advantages of deep penetration depth, high signal-to-noise ratio, and high sensitivity. Combined with commercial indocyanine green reagents and aggregation-induced emission dyes, this system can monitor the distribution of blood vessels in real time and continuously monitor deep tissues and organs in mice, and conduct the dynamically monitoring research in living mice in a conscious state. This helps to promote tumor research and drug development research in the field of biomedical imaging to enter a new stage.
      通信作者: 付威威, fuww@sibet.ac.cn ; 董月芳, dongyf@sibet.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFF0713600)资助的课题.
      Corresponding author: Fu Wei-Wei, fuww@sibet.ac.cn ; Dong Yue-Fang, dongyf@sibet.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0713600).
    [1]

    Hong G S, Antaris A L, Dai H J 2017 Nat. Biomed. Eng. 1 0010Google Scholar

    [2]

    Li C Y, Wang Q B 2018 ACS Nano 12 9654Google Scholar

    [3]

    Cao J, Zhu B L, Zheng K F, He S G, Meng L, Song J B, Yang H H 2020 Front. Bioeng. Biotech. 7 487Google Scholar

    [4]

    Miao Q Q, Pu K Y 2018 Adv. Mater. 30 1801778Google Scholar

    [5]

    Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H J 2009 Nat. Nanotechnol. 4 773Google Scholar

    [6]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710Google Scholar

    [7]

    Chang B S, Li D F, Ren Y, Qu C R, Shi X J, Liu R Q, Liu H G, Tian J, Hu Z H, Sun T L, Cheng Z 2022 Nat. Biomed. Eng. 6 629Google Scholar

    [8]

    Wang T, Wang S F, Liu Z Y, He Z Y, Yu P, Zhao M Y, Zhang H X, Lu L F, Wang Z X, Wang Z Y, Zhang W A, Fan Y, Sun C X, Zhao D Y, Liu W M, Bunzli J C G, Zhang F 2021 Nat. Mater. 20 1571Google Scholar

    [9]

    Diao S, Hong G S, Antaris A L, Blackburn J L, Cheng K, Cheng Z, Dai H J 2015 Nano Res 8 3027Google Scholar

    [10]

    Zhang X N, Li S S, Ma H Z, Wang H, Zhang R P, Zhang X D 2022 Theranostics 12 3345Google Scholar

    [11]

    Tian R, Ma H L, Zhu S J, Lau J, Ma R, Liu Y J, Lin L S, Chandra S, Wang S, Zhu X F, Deng H Z, Niu G, Zhang M X, Antaris A L, Hettie K S, Yang B, Liang Y Y, Chen X Y 2020 Adv. Mater. 32 1907365Google Scholar

    [12]

    Alifu N, Ma R, Zhu L J, Du Z, Chen S, Yan T, Alimu G, Zhang L X, Zhang X L 2022 J. Mater. Chem. B 10 506Google Scholar

    [13]

    Soref R A 1993 P. IEEE 81 1687Google Scholar

    [14]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [15]

    Hu F, Dai X Y, Zhou Z Q, Kong X Y, Sun S L, Zhang R J, Wang S Y, Lu M, Sun J 2019 Opt. Express 27 3161Google Scholar

    [16]

    Yang Y, Zhao J H, Li C, Chen Q D, Chen Z G, Sun H B 2021 Opt. Lett. 46 3300Google Scholar

    [17]

    Vallone M, Goano M, Bertazzi F, Ghione G, Schirmacher W, Hanna S, Figgemeier H 2016 J. Electron. Mater. 45 4524Google Scholar

    [18]

    Martyniuk P, Rogalski A 2013 B. Pol. Acad. Sci-Tech. 61 211Google Scholar

    [19]

    Li X, Gong H M, Fang J X, Shao X M, Tang H J, Huang S L, Li T, Huang Z C 2017 Infrared Phys. Techn. 80 112Google Scholar

    [20]

    Singh A, Pal R 2017 Appl. Phys. A 123 701Google Scholar

    [21]

    Feng Z, Tang T, Wu T X, Yu X M, Zhang Y H, Wang M, Zheng J Y, Ying Y Y, Chen S Y, Zhou J, Fan X X, Zhang D, Li S L, Zhang M X, Qian J 2021 Light 10 197Google Scholar

    [22]

    Benayas A, Hemmer E, Hong G S, et al. 2020 Near Infrared-emitting Nanoparticles for Biomedical Applications (Cham: Springer) pp11–15

    [23]

    He Y, Wang S F, Yu P, Yan K, Ming J, Yao C Z, He Z Y, El-Toni A M, Khan A, Zhu X Y, Sun C X, Lei Z H, Zhang F 2021 Chem. Sci. 12 10474Google Scholar

    [24]

    Zhang Z Y, He K S, Chi C W, Hu Z H, Tian J 2022 EJNMMI 49 2531Google Scholar

    [25]

    Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z 2001 Chem. Commun. 18 1740Google Scholar

    [26]

    Zhu W, Kang M M, Wu Q, Zhang Z J, Wu Y, Li C B, Li K, Wang L, Wang D, Tang B Z 2021 Adv. Funct. Mater. 31 2007026Google Scholar

  • 图 1  荧光成像示意图

    Fig. 1.  Schematic diagram of fluorescence imaging.

    图 2  生物组织的吸收和散射作用

    Fig. 2.  Absorption and scattering of biological tissues.

    图 3  NIR-II荧光成像系统 (a) 系统结构示意图; (b) 系统三维效果图

    Fig. 3.  NIR-II fluorescence imaging system: (a) Schematic diagram of system; (b) 3D design of system.

    图 4  荧光图像处理 (a) 流程图; (b) 原始低荧光图像; (c) 原始高荧光图像; (d) 图(b)的增强图像; (e) 图(c)的增强图像

    Fig. 4.  Fluorescence image processing: (a) Flow chart; (b) original low fluorescence image; (c) original high fluorescence image; (d) enhanced image of Fig. (b); (e) enhanced image of Fig. (c).

    图 5  系统的穿透深度测试 (a) 示意图; (b) 实物图; (c) 伪彩图像

    Fig. 5.  Penetration depth testing of the system: (a) Schematic diagram; (b) physical diagram; (c) pseudo color image.

    图 6  ICG梯度实验 (a) 12组的荧光信号强度分析; (b) 最后4组的荧光信号强度分析

    Fig. 6.  ICG gradient experiment: (a) Analysis of fluorescence signal intensity in 12 groups; (b) analysis of fluorescence signal intensity for the last 4 groups.

    图 7  脱毛小鼠

    Fig. 7.  Depilatory mouse.

    图 8  荧光成像 (a) 原始荧光图像; (b) 增强荧光图像; (c) ROI选取示意图; (d) 图(a)的ROI信背比分析; (e) 图(b)的ROI信背比分析

    Fig. 8.  Fluorescence imaging: (a) Original fluorescence image; (b) enhanced fluorescence image; (c) schematic diagram of ROI selection; (d) ROI analysis of signal-to-back ratio in Fig. (a); (e) ROI analysis of signal-to-back ratio in Fig. (b).

    图 9  组织器官荧光成像持续监测结果

    Fig. 9.  Continuous monitoring results of tissue and organ fluorescence imaging.

    图 10  活体动物动态监测结果 (a) 原始荧光图像; (b) 伪彩增强图像

    Fig. 10.  Dynamic monitoring results of living animals: (a) Original fluorescence image; (b) pseudo color enhanced image.

    表 1  图像量化评价指标对比

    Table 1.  Comparison of image quantitative evaluation indicators.

    评价指标清晰度标准差
    原始低/高荧光图像352.7517.42399.910294.3
    处理后低/高荧光图像2520.6723.08440.617042.3
    下载: 导出CSV
  • [1]

    Hong G S, Antaris A L, Dai H J 2017 Nat. Biomed. Eng. 1 0010Google Scholar

    [2]

    Li C Y, Wang Q B 2018 ACS Nano 12 9654Google Scholar

    [3]

    Cao J, Zhu B L, Zheng K F, He S G, Meng L, Song J B, Yang H H 2020 Front. Bioeng. Biotech. 7 487Google Scholar

    [4]

    Miao Q Q, Pu K Y 2018 Adv. Mater. 30 1801778Google Scholar

    [5]

    Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H J 2009 Nat. Nanotechnol. 4 773Google Scholar

    [6]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710Google Scholar

    [7]

    Chang B S, Li D F, Ren Y, Qu C R, Shi X J, Liu R Q, Liu H G, Tian J, Hu Z H, Sun T L, Cheng Z 2022 Nat. Biomed. Eng. 6 629Google Scholar

    [8]

    Wang T, Wang S F, Liu Z Y, He Z Y, Yu P, Zhao M Y, Zhang H X, Lu L F, Wang Z X, Wang Z Y, Zhang W A, Fan Y, Sun C X, Zhao D Y, Liu W M, Bunzli J C G, Zhang F 2021 Nat. Mater. 20 1571Google Scholar

    [9]

    Diao S, Hong G S, Antaris A L, Blackburn J L, Cheng K, Cheng Z, Dai H J 2015 Nano Res 8 3027Google Scholar

    [10]

    Zhang X N, Li S S, Ma H Z, Wang H, Zhang R P, Zhang X D 2022 Theranostics 12 3345Google Scholar

    [11]

    Tian R, Ma H L, Zhu S J, Lau J, Ma R, Liu Y J, Lin L S, Chandra S, Wang S, Zhu X F, Deng H Z, Niu G, Zhang M X, Antaris A L, Hettie K S, Yang B, Liang Y Y, Chen X Y 2020 Adv. Mater. 32 1907365Google Scholar

    [12]

    Alifu N, Ma R, Zhu L J, Du Z, Chen S, Yan T, Alimu G, Zhang L X, Zhang X L 2022 J. Mater. Chem. B 10 506Google Scholar

    [13]

    Soref R A 1993 P. IEEE 81 1687Google Scholar

    [14]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [15]

    Hu F, Dai X Y, Zhou Z Q, Kong X Y, Sun S L, Zhang R J, Wang S Y, Lu M, Sun J 2019 Opt. Express 27 3161Google Scholar

    [16]

    Yang Y, Zhao J H, Li C, Chen Q D, Chen Z G, Sun H B 2021 Opt. Lett. 46 3300Google Scholar

    [17]

    Vallone M, Goano M, Bertazzi F, Ghione G, Schirmacher W, Hanna S, Figgemeier H 2016 J. Electron. Mater. 45 4524Google Scholar

    [18]

    Martyniuk P, Rogalski A 2013 B. Pol. Acad. Sci-Tech. 61 211Google Scholar

    [19]

    Li X, Gong H M, Fang J X, Shao X M, Tang H J, Huang S L, Li T, Huang Z C 2017 Infrared Phys. Techn. 80 112Google Scholar

    [20]

    Singh A, Pal R 2017 Appl. Phys. A 123 701Google Scholar

    [21]

    Feng Z, Tang T, Wu T X, Yu X M, Zhang Y H, Wang M, Zheng J Y, Ying Y Y, Chen S Y, Zhou J, Fan X X, Zhang D, Li S L, Zhang M X, Qian J 2021 Light 10 197Google Scholar

    [22]

    Benayas A, Hemmer E, Hong G S, et al. 2020 Near Infrared-emitting Nanoparticles for Biomedical Applications (Cham: Springer) pp11–15

    [23]

    He Y, Wang S F, Yu P, Yan K, Ming J, Yao C Z, He Z Y, El-Toni A M, Khan A, Zhu X Y, Sun C X, Lei Z H, Zhang F 2021 Chem. Sci. 12 10474Google Scholar

    [24]

    Zhang Z Y, He K S, Chi C W, Hu Z H, Tian J 2022 EJNMMI 49 2531Google Scholar

    [25]

    Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z 2001 Chem. Commun. 18 1740Google Scholar

    [26]

    Zhu W, Kang M M, Wu Q, Zhang Z J, Wu Y, Li C B, Li K, Wang L, Wang D, Tang B Z 2021 Adv. Funct. Mater. 31 2007026Google Scholar

  • [1] 张林峰, 丁潇川, 侯智善, 曹宇. 激光直写玻璃基平面波导用于荧光成像. 物理学报, 2023, 72(7): 074203. doi: 10.7498/aps.72.20222033
    [2] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [3] 常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛. 室外环境中的关联成像研究进展. 物理学报, 2023, 72(18): 183301. doi: 10.7498/aps.72.20231245
    [4] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [6] 王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 杨敬顺, 宋连科. 新型双通道差分偏振干涉成像系统. 物理学报, 2018, 67(10): 100701. doi: 10.7498/aps.67.20172691
    [7] 万文博, 华灯鑫, 乐静, 闫哲, 周春艳. 基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究. 物理学报, 2015, 64(19): 190702. doi: 10.7498/aps.64.190702
    [8] 常松涛, 孙志远, 张尧禹, 朱玮. 制冷型红外成像系统内部杂散辐射测量方法. 物理学报, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [9] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [10] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统. 物理学报, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [11] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [12] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [13] 刘英, 孙强, 卢振武, 曲锋, 吴宏圣, 李淳. 折射/谐衍射红外双波段成像光谱仪系统研究. 物理学报, 2010, 59(10): 6980-6987. doi: 10.7498/aps.59.6980
    [14] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [15] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像. 物理学报, 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [16] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [17] 高 飞, 刘华锋, 施鹏程. 小动物正电子断层成像仪性能测试. 物理学报, 2007, 56(7): 4229-4234. doi: 10.7498/aps.56.4229
    [18] 郭汉明, 陈家璧, 庄松林. 相干点源照明时消球差光学系统的像场结构. 物理学报, 2007, 56(2): 811-818. doi: 10.7498/aps.56.811
    [19] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [20] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
计量
  • 文章访问数:  3175
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-01-04
  • 上网日期:  2024-01-23
  • 刊出日期:  2024-04-05

/

返回文章
返回