搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管

张雪 KimBokyung LeeHyeonju ParkJaehoon

引用本文:
Citation:

低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管

张雪, KimBokyung, LeeHyeonju, ParkJaehoon

Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology

Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon
PDF
HTML
导出引用
  • 利用脉冲紫外线辅助热退火在200 ℃的低温条件下, 5 min内制备了基于溶液工艺的氧化铟薄膜及薄膜晶体管. 对比传统热退火, 研究了脉冲紫外线辅助热退火对氧化铟薄膜的表面形态、化学结构和电学特性的影响. 实验结果表明, 脉冲紫外线辅助热退火方式能够在短时间内实现改善氧化铟薄膜的质量及薄膜晶体管的性能. 原子力显微镜和场发射扫描电子显微镜结果显示该薄膜表面较传统热退火制备薄膜表面更为致密平坦. X 射线光电能谱测试表明, 脉冲紫外线辅助热退火处理后会产生氧空位, 从而提高载流子浓度, 改善了氧化铟薄膜的导电性. 此外, 对比研究了紫外线辅助热退火对氧化铟薄膜晶体管电气性能的影响. 结果表明器件的电学特性得到了明显改善, 亚阈值摆幅降低至0.12 mV/dec, 阈值电压为7.4 V, 电流开关比高达1.29×107, 场效应迁移率提升至1.27 cm2/(V·s). 因此, 脉冲紫外线辅助热退火是一种简单、快速的退火方式, 即使在低温条件下也能快速提高氧化铟薄膜和薄膜晶体管的性能.
    Indium oxide (In2O3) thin films and thin-film transistors (TFTs) based on the solution process are prepared by pulsed UV-assisted thermal annealing at a low temperature (200 ℃) for 5 min. The effects of pulsed UV-assisted thermal annealing on the surface morphology, chemical structure, and electrical properties of the In2O3 thin films are investigated, and they are compared with those of conventional thermal annealing (300 ℃, 30 min). The experimental results show that the pulsed UV-assisted thermal annealing method can improve the quality of In2O3 thin film and the performance of TFT in a short period. The results of atomic force microscopy and field emission scanning electron microscopy show that the surface of the In2O3 film is denser and flatter than that of the conventional thermally annealed film, and X-ray photoelectron spectroscopy tests show that the pulsed UV-assisted thermal annealing process generates oxygen vacancies, which increases the carrier concentration and improves the electrical conductivity of the In2O3 film. In addition, the effect of pulsed UV-assisted thermal annealing on the electrical characteristics of In2O3 TFTs is investigated in a comparative way. The results show that the electrical characteristics of the device are significantly improved: the subthreshold swing decreases to 0.12 mV/dec, the threshold voltage is 7.4 V, the current switching ratio is as high as 1.29×107, and the field effect mobility is enhanced to 1.27 cm2·V–1·s–1. Therefore, pulsed UV-assisted thermal annealing is a simple and fast annealing method, which can rapidly improve the performances of In2O3 thin film and TFTs, even under low-temperature conditions.
      通信作者: 张雪, skd996027@sdust.edu.cn ; ParkJaehoon, jaypark@hallym.ac.kr
    • 基金项目: 科技部中韩青年科学家交流计划(批准号: 国科外[2021]5号)资助的课题.
      Corresponding author: Zhang Xue, skd996027@sdust.edu.cn ; Park Jaehoon, jaypark@hallym.ac.kr
    • Funds: Project supported by the Young Scientist Exchange Program China-Korea (Grant No. [2021]5).
    [1]

    He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [2]

    Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar

    [3]

    Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar

    [4]

    Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar

    [5]

    Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar

    [6]

    Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar

    [7]

    Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar

    [8]

    Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar

    [9]

    Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar

    [10]

    Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar

    [11]

    谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar

    Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar

    [12]

    Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar

    [13]

    Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar

    [14]

    Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar

    [15]

    Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar

    [16]

    Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar

    [17]

    Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar

    [18]

    Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar

    [19]

    Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar

    [20]

    Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar

    [21]

    Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar

    [22]

    Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar

    [23]

    Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar

    [24]

    Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar

    [25]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [26]

    Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar

    [27]

    Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar

  • 图 1  (a) In2O3 TFT的结构示意图; (b) 脉冲紫外线辅助热退火工艺的原理示意图

    Fig. 1.  Schematic diagram of (a) structure of the prepared In2O3 TFT and (b) principle of the pulsed UV-assisted T.A.

    图 2  In2O3前驱体溶液的TGA曲线

    Fig. 2.  TGA of In2O3 precursor solution.

    图 3  硅板、样品1 (传统热退火方式)和样品2 (脉冲紫外线辅助热退火方式)的XRD图谱

    Fig. 3.  XRD patterns of Si substrate, Sample 1 (T.A.) and Sample 2 (pulsed UV+T.A.).

    图 4  In2O3薄膜的AFM图像 (a) 样品1 (传统热退火方式); (b) 样品2 (脉冲紫外线辅助热退火方式)

    Fig. 4.  AFM images of In2O3 thin films: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 5  In2O3薄膜的FESEM图像 (a) 样品1 (传统热退火方式); (b) 样品2 (脉冲紫外线辅助热退火方式)

    Fig. 5.  FESEM images of In2O3 thin films: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 6  样品1 (传统热退火方式)和样品2 (脉冲紫外线辅助热退火方式)的In 3d XPS图谱

    Fig. 6.  In 3d XPS spectra of Sample 1 (T.A.) and Sample 2 (pulsed UV+T.A.).

    图 7  In2O3薄膜O 1s的拟合XPS图谱 (a)样品1 (传统热退火方式); (b)样品2 (脉冲紫外线辅助热退火方式)

    Fig. 7.  O 1s high resolution XPS spectra of In2O3 thin film: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 8  脉冲紫外线辅助热退火促使In2O3薄膜内部氧空位生成机理

    Fig. 8.  Pulsed UV-assisted thermal annealing promotes the mechanism of oxygen vacancy generation inside In2O3 thin films.

    图 9  不同退火方式所制备In2O3薄膜的电气特性变化

    Fig. 9.  Variation of electrical properties of In2O3 thin films prepared by different annealing methods.

    图 10  不同退火方式所制备样品的(a)输出特性和(b)转移特性

    Fig. 10.  (a) Output and (b) transfer characteristics of samples prepared by different annealing methods.

    表 1  不同热退火方式制备In2O3 TFTs的电学特性参数

    Table 1.  Electrical parameters of In2O3 TFTs prepared by different thermal annealing methods.

    样品 亚阈值摆幅 电流比 阈值电压 迁移率
    S.S./(mV·dec–1) Ion/Ioff VTH/V μsat/(cm2·V–1·s–1)
    样品1 (T.A.) 0.17 1.88×106 7.6 0.22
    样品2 (Pulsed UV +T.A.-5 min) 0.12 1.29×107 7.4 1.27
    样品3 (Pulsed UV +T.A.-10 min) -2.52 2.43
    下载: 导出CSV
  • [1]

    He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [2]

    Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar

    [3]

    Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar

    [4]

    Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar

    [5]

    Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar

    [6]

    Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar

    [7]

    Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar

    [8]

    Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar

    [9]

    Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar

    [10]

    Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar

    [11]

    谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar

    Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar

    [12]

    Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar

    [13]

    Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar

    [14]

    Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar

    [15]

    Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar

    [16]

    Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar

    [17]

    Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar

    [18]

    Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar

    [19]

    Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar

    [20]

    Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar

    [21]

    Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar

    [22]

    Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar

    [23]

    Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar

    [24]

    Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar

    [25]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [26]

    Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar

    [27]

    Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar

  • [1] 赵泽贤, 徐萌, 彭聪, 张涵, 陈龙龙, 张建华, 李喜峰. 喷墨打印高迁移率铟锌锡氧化物薄膜晶体管. 物理学报, 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [2] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [3] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [4] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [8] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [11] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [12] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [13] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [14] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [15] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [16] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [17] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [19] 罗翀, 孟志国, 王烁, 熊绍珍. 溶液法铝诱导晶化制备多晶硅薄膜. 物理学报, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [20] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究. 物理学报, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
计量
  • 文章访问数:  2631
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 修回日期:  2024-02-27
  • 上网日期:  2024-02-29
  • 刊出日期:  2024-05-05

/

返回文章
返回