搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国散裂中子源二期靶站关键部件辐照损伤模拟计算

曹嵩 殷雯 周斌 胡志良 沈飞 易天成 王松林 梁天骄

引用本文:
Citation:

中国散裂中子源二期靶站关键部件辐照损伤模拟计算

曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄

Calculation of radiation damage of key components of China Spallation Neutron Source II target station

Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao
PDF
HTML
导出引用
  • 中国散裂中子源一期工程于2018年通过国家验收, 当前束流功率已经达到140 kW. 为进一步提高靶站慢化器输出中子强度, 已经提出中国散裂中子源二期500 kW功率升级计划. 靶站关键部件长期受到高通量、高能量的粒子辐照, 会产生较强的辐照损伤, 影响着这些部件的使用寿命. 本文首先使用PHITS3.33程序计算了钨、SS316不锈钢、6061铝合金3种材料的质子和中子原子离位截面以及氢、氦的产生截面, 并分析了NRT (Norgett-Robinson-Torrens )模型和热平衡前原子复位修正(athermal recombination corrected, ARC)模型对材料离位损伤的影响. 在此基础上结合中国散裂中子源二期靶站基线模型计算了靶站关键部件在500 kW的束流功率下运行5000 h产生的原子离位次数(displacement per atom, DPA)以及氢、氦的产额. 计算结果表明, 钨靶受辐照后产生的NRT-dpa, ARC-dpa, H和He产额最大值分别为8.01 dpa/y (1 y = 2500 MW·h), 2.39 dpa/y, 5110 appm/y (atom parts per million, appm, 每百万原子中产生该原子的个数)和884 appm/y. 同样也计算了靶容器、慢化器反射体容器和质子束窗的辐照损伤值, 根据这些部件的辐照损伤值预估了各自的使用寿命. 这些结果对分析中国散裂中子源二期靶站关键部件的辐照损伤情况, 构建合理的维护方案有着十分重要的意义.
    China Spallation Neutron Source (CSNS) I project passed the national acceptance in 2018, and current beam power has reached 140 kW. In order to further improve the output neutron strength of the target station moderator, a 500 kW power upgrade plan has been proposed for CSNS II. The target station is an important part of the spallation neutron source. In the target station, a large number of neutrons are produced by the spallation reaction between high energy protons and the target, these neutrons are moderated by the moderator and become neutrons for neutron scattering experiments. During operation, the target and other key components such as the target container, the moderator reflector container, and the proton beam window are irradiated by high-flux and high-energy particles for a long time, which will result in serious radiation damage. It is important to assess the accumulated radiation damage during operation to determine the service life of each component. At present, the physical quantities used to evaluate the radiation damage degree of materials include displacement per atom (DPA), H and He production. In this work, the displacement damage cross sections of protons and neutrons and the H, He production cross sections for W, SS316 and Al-6061 materials are obtained by using PHITS. The effects of the Norgett-Robinson-Torrens (NRT) model and athermal recombination corrected (ARC) model on the calculation of displacement damage are analyzed. The results show that the cross section calculated based on ARC model is lower than that based on NRT model, because the NRT model does not take into account the resetting of the atoms before reaching thermodynamic equilibrium. On this basis, DPA, H and He production of the key components of the target station operating for 5000 h at a power of 500 kW are calculated by combining the baseline model of the second phase target station of the spallation neutron source in China. The results show that the yields of NRT-dpa, ARC-dpa, H and He produced by irradiation are 8.01 dpa/y (in this paper, 1 y = 2500 MW·h), 2.39 dpa/y, 5110 appm/y and 884 appm/y, respectively. The radiation damage values of the target vessel are 5.34 dpa/y, 1.92 dpa/y, 2180 appm/y and 334 appm/y, respectively. The radiation damage values of the moderators and reflectors are 3.78 dpa/y, 1.77 dpa/y, 124 appm/y, and 36.7 appm/y. The radiation damage values of the proton beam window are 0.35 dpa/y, 0.19 dpa/y, 962 appm/y, and 216 appm/y. Subsequently, the life of each component is estimated by analyzing the radiation damage. These results are very important for analyzing the radiation damage of these parts, and constructing reasonable maintenance programs.
      通信作者: 王松林, wangsl@ihep.ac.cn ; 梁天骄, liangtj@ihep.ac.cn
    • 基金项目: 国家自然科学基金联合基金(批准号: U1932219)、广东省引进创新创业团队项目(批准号: 2017ZT07S225)和中德科学基金研究交流中心资助的中德合作交流项目(批准号: M-0728)资助的课题.
      Corresponding author: Wang Song-Lin, wangsl@ihep.ac.cn ; Liang Tian-Jiao, liangtj@ihep.ac.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1932219), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams, China (Grant No. 2017ZT07S225), and the Mobility Programme endorsed by the Joint Committee of the Sino-German Center, China (Grant No. M-0728).
    [1]

    Wei J, Fu S N, Tang J Y, Tao J Z, Wang D S, Wang F W, Wang S 2009 Chin. Phys. C 33 1033Google Scholar

    [2]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [3]

    Yin W, Yu Q Z, Lu Y L, Wang S L, Tong J F, Liang T J 2012 J. Nucl. Mater. 431 39Google Scholar

    [4]

    Simon G W, Denney J M, Downing R G 1963 Phys. Rev. 129 2454Google Scholar

    [5]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Engs. Des. 33 50Google Scholar

    [6]

    Broeders C H M, Konobeyev A Yu 2005 J. Nucl. Mater. 336 201Google Scholar

    [7]

    Broeders C H M, Konobeyev A Yu, Villagrasa C 2005 J. Nucl. Mater. 342 68Google Scholar

    [8]

    Konobeyev A Yu, Broeders C H M, Fischer U 2007 Proceedings of the 8th International Topical Meeting on the Nuclear Applications of Accelerator Technology (AccApp’07) Pocatello, Idaho, July 29–August 2, 2007 p241

    [9]

    Konobeyev A Yu, Fischer U 2014 Proceedings of the HB 2014 East-Lansing, MI, USA, November 10–14, 2014 pTHO4AB02

    [10]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Common. 9 1084Google Scholar

    [11]

    Konobeyev A Yu, Fischer U, Simakov S P 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 431 55Google Scholar

    [12]

    Konobeyev A Yu, Fischer U, Simakov S P 2019 Nucl. Eng. Technol. 51 170Google Scholar

    [13]

    Herbach C M, Hilscher D, Jahnke U, Tishchenko V G, Galin J, Letourneau A, Péghaire A, Filges D, Goldenbaum F, Pienkowski L, Schröder W U, Tõke J 2006 Nucl. Phys. A 765 426Google Scholar

    [14]

    Barnett M H, Wechsler M S, Dudziak D J, Mansur L K, Murphy B D 2001 J. Nucl. Mater. 296 54Google Scholar

    [15]

    Lu W, Wechsler M S, Dai Y 2003 J. Nucl. Mater. 318 176Google Scholar

    [16]

    Meigo S, Ooi M, Harada M, Kinoshita H, Akutsu A 2014 J. Nucl. Mater. 450 141Google Scholar

    [17]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [18]

    Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K 2018 J. Nucl. Sci. Technol. 55 684Google Scholar

    [19]

    Konobeyev A Yu, Fischer U, Korovin Y A 2017 Nucl. Eng. Technol. 3 169Google Scholar

    [20]

    Yin W, Konobeyev A Yu, Leichtle D, Cao L Z 2023 J. Nucl. Mater. 573 154143Google Scholar

    [21]

    Lindhard J, Nielsen V, Scharff M 1968 Mat. Fys. Medd. Dan. Vid. Selsk. 36 3

    [22]

    Jun I 2001 IEEE T. Nucl. Sci. 48 162Google Scholar

    [23]

    Burke E A 1986 IEEE T. Nucl. Sci. 33 1276Google Scholar

    [24]

    Boudard A, Cugnon J, David J C, Leray S, Mancusi D 2013 Phys. Rev. C 87 014606Google Scholar

    [25]

    Niita K 1995 Phys. Rev. C 52 2620Google Scholar

    [26]

    Furihata S 2000 Nucl. Instrum. Methods Phys. Res. B 171 251Google Scholar

    [27]

    Jung P 1983 J. Nucl. Mater. 117 70Google Scholar

    [28]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2021 Mater. Sci. Forum. 1024 95Google Scholar

    [29]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2020 JPS Conf. Proc. 28 061003Google Scholar

    [30]

    Greene G A, Snead C L, Finfrock C C, Hanson A L, James M R, Sommer W F, Pitcher E J, Waters L S 2003 Proceedings of the 6th International Meeting on Nuclear Applications of Accelerator Technology (AccApp’03) San Diego, USA, June 1–5, 2003 pp881–892

    [31]

    Dai Y, Foucher Y, James M R, Oliver B M 2003 J. Nucl. Mater. 318 167Google Scholar

    [32]

    Chen J, Ullmaier H, Floβdorf T, Kuhnlein W, Duwe R, Carsughi F, Broome T 2001 J. Nucl. Mater. 298 248Google Scholar

    [33]

    Oak Ridge National Laboratory 2020 Spallation neutron Source Second Target Station Conceptual Design Report Volume 1: Overview, Technical experimental system S01010000-TR0001, R00

    [34]

    Iwamoto Y, Meigo S, Hashimoto S 2020 J. Nucl. Mater. 538 1522Google Scholar

  • 图 1  CSNS靶站的TMR结构示意图

    Fig. 1.  Structural diagram of TMR of CSNS target station.

    图 2  弹性散射和非弹性散射对W的质子离位损伤截面的贡献

    Fig. 2.  Contribution of elastic scattering and inelastic scattering to the proton displacement cross section of W.

    图 3  W, SS316, Al-6061的离位损伤截面 (a) p+W; (b) n+W; (c) p+SS316; (d) n+SS316; (e) p+Al-6061; (f) n+Al-6061

    Fig. 3.  Displacement cross section of W, SS316, Al-6061: (a) p+W; (b) n+W; (c) p+SS316; (d) n+SS316; (e) p+Al-6061; (f) n+Al-6061.

    图 4  W, SS316, Al-6061的H, He产生截面 (a) W-H; (b) W-He; (c) SS316-H; (d) SS316-He; (e) Al-6061-H; (f) Al-6061-He

    Fig. 4.  H, He production cross section of W, SS316, Al-6061: (a) W-H; (b) W-He; (c) SS316-H; (d) SS316-He; (e) Al-6061-H; (f) Al-6061-He.

    图 5  靶站几何模型 (a) TMR系统y-z轴截面图, 其中+y为质子入射方向; (b)质子束窗

    Fig. 5.  Geometric model of target station: (a) Plane diagram of the y-z axis of the TMR system, where +y is the proton incident direction; (b) proton beam window.

    图 6  靶站入射质子束斑形状

    Fig. 6.  Shape of the incident proton beam at the target station.

    图 7  靶、靶容器和慢化器反射体容器的质子和中子通量

    Fig. 7.  Proton and neutron fluxes of targets, target containers, and moderator reflector containers.

    图 8  靶体ARC-dpa的空间分布(x-y平面) (a) p+ARC-dpa; (b) n+ARC-dpa; (c) total+ARC-dpa

    Fig. 8.  ARC-dpa spatial distribution of target (x-y plane): (a) p+ARC-dpa; (b) n+ARC-dpa; (c) total+ARC-dpa.

    图 9  靶体DPA在y (质子入射)方向的分布

    Fig. 9.  DPA distribution of target in the y (proton incidence) direction.

    图 10  靶窗ARC-dpa的空间分布(x-z平面) (a) p+ARC-dpa; (b) n+ARC-dpa

    Fig. 10.  ARC-dpa spatial distribution of target window (x-z plane): (a) p+ARC-dpa; (b) n+ARC-dpa.

    图 11  CHM容器靠近靶体位置He产额分布(x-y平面) (a)质子; (b)中子

    Fig. 11.  He production spatial distribution of CHM vessel: (a) Proton; (b) neutron.

    表 1  SS316不锈钢、6061铝合金的核素组成

    Table 1.  Nuclide composition of SS316 stainless steel and 6061 aluminum alloy.

    材料 核素原子数百分比
    SS316 Fe (65.4%), Cr (17.0%), Ni (12.0%),
    Mo (2.5%)
    Mn (2%), Si (1%),
    P (0.045%), C (0.03%)
    Al-6061 Al (98.2%), Mg (1.1%), Si (0.0057%)
    下载: 导出CSV

    表 2  部分元素的Ed, barc, carc参数值

    Table 2.  The Ed, barc, carc values of some elements.

    元素 Ed/eV barc carc
    Mg 20 –1.00 0.45
    Al 27 –0.82 0.44
    Cr 40 –1.01 0.37
    Fe 40 –0.57 0.29
    Ni 39 –1.01 0.23
    Mn 32.5 –1.00 0.33
    W 70 –0.55 -0.25
    下载: 导出CSV

    表 3  质子束窗辐照损伤最大值

    Table 3.  Maximum radiation damage value of proton beam window.

    ProtonNeutronTotal
    NRT-dpa/(dpa·y–1)0.340.00690.35
    ARC-dpa/(dpa·y–1)0.180.00440.19
    比值/(NRT/ARC)1.871.571.86
    H 产额/(appm·y–1)9610.61962
    He 产额/(appm·y–1)2160.19216
    下载: 导出CSV

    表 4  W, SS316, Al-6061的辐照损伤限值

    Table 4.  Radiation damage limit of W, SS316, Al-6061.

    材料 NRT-dpa
    限值/dpa
    ARC-dpa
    限值/dpa
    He产额
    限值/appm
    W 10 3.0
    SS316 12 4.3
    Al-6061 40 18.7 2000
    下载: 导出CSV

    表 5  靶站关键部件的辐照损伤值和预期寿命

    Table 5.  Radiation damage value and lifetime of key components of target station.

    部件 材料 NRT-dpa/(dpa·y–1) ARC-dpa/(dpa·y–1) H产额/(appm·y–1) He产额/(appm·y–1) 寿命/year
    靶体 W 8.01 2.39 5110 884 1.25
    靶容器 SS316 5.34 1.92 2180 334 2.25
    慢化器容器 Al-6061 3.78 1.77 124 36.7 10.5
    质子束窗 Al-6061 0.348 0.187 962 216 9.26
    下载: 导出CSV
  • [1]

    Wei J, Fu S N, Tang J Y, Tao J Z, Wang D S, Wang F W, Wang S 2009 Chin. Phys. C 33 1033Google Scholar

    [2]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [3]

    Yin W, Yu Q Z, Lu Y L, Wang S L, Tong J F, Liang T J 2012 J. Nucl. Mater. 431 39Google Scholar

    [4]

    Simon G W, Denney J M, Downing R G 1963 Phys. Rev. 129 2454Google Scholar

    [5]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Engs. Des. 33 50Google Scholar

    [6]

    Broeders C H M, Konobeyev A Yu 2005 J. Nucl. Mater. 336 201Google Scholar

    [7]

    Broeders C H M, Konobeyev A Yu, Villagrasa C 2005 J. Nucl. Mater. 342 68Google Scholar

    [8]

    Konobeyev A Yu, Broeders C H M, Fischer U 2007 Proceedings of the 8th International Topical Meeting on the Nuclear Applications of Accelerator Technology (AccApp’07) Pocatello, Idaho, July 29–August 2, 2007 p241

    [9]

    Konobeyev A Yu, Fischer U 2014 Proceedings of the HB 2014 East-Lansing, MI, USA, November 10–14, 2014 pTHO4AB02

    [10]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Common. 9 1084Google Scholar

    [11]

    Konobeyev A Yu, Fischer U, Simakov S P 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 431 55Google Scholar

    [12]

    Konobeyev A Yu, Fischer U, Simakov S P 2019 Nucl. Eng. Technol. 51 170Google Scholar

    [13]

    Herbach C M, Hilscher D, Jahnke U, Tishchenko V G, Galin J, Letourneau A, Péghaire A, Filges D, Goldenbaum F, Pienkowski L, Schröder W U, Tõke J 2006 Nucl. Phys. A 765 426Google Scholar

    [14]

    Barnett M H, Wechsler M S, Dudziak D J, Mansur L K, Murphy B D 2001 J. Nucl. Mater. 296 54Google Scholar

    [15]

    Lu W, Wechsler M S, Dai Y 2003 J. Nucl. Mater. 318 176Google Scholar

    [16]

    Meigo S, Ooi M, Harada M, Kinoshita H, Akutsu A 2014 J. Nucl. Mater. 450 141Google Scholar

    [17]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [18]

    Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K 2018 J. Nucl. Sci. Technol. 55 684Google Scholar

    [19]

    Konobeyev A Yu, Fischer U, Korovin Y A 2017 Nucl. Eng. Technol. 3 169Google Scholar

    [20]

    Yin W, Konobeyev A Yu, Leichtle D, Cao L Z 2023 J. Nucl. Mater. 573 154143Google Scholar

    [21]

    Lindhard J, Nielsen V, Scharff M 1968 Mat. Fys. Medd. Dan. Vid. Selsk. 36 3

    [22]

    Jun I 2001 IEEE T. Nucl. Sci. 48 162Google Scholar

    [23]

    Burke E A 1986 IEEE T. Nucl. Sci. 33 1276Google Scholar

    [24]

    Boudard A, Cugnon J, David J C, Leray S, Mancusi D 2013 Phys. Rev. C 87 014606Google Scholar

    [25]

    Niita K 1995 Phys. Rev. C 52 2620Google Scholar

    [26]

    Furihata S 2000 Nucl. Instrum. Methods Phys. Res. B 171 251Google Scholar

    [27]

    Jung P 1983 J. Nucl. Mater. 117 70Google Scholar

    [28]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2021 Mater. Sci. Forum. 1024 95Google Scholar

    [29]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2020 JPS Conf. Proc. 28 061003Google Scholar

    [30]

    Greene G A, Snead C L, Finfrock C C, Hanson A L, James M R, Sommer W F, Pitcher E J, Waters L S 2003 Proceedings of the 6th International Meeting on Nuclear Applications of Accelerator Technology (AccApp’03) San Diego, USA, June 1–5, 2003 pp881–892

    [31]

    Dai Y, Foucher Y, James M R, Oliver B M 2003 J. Nucl. Mater. 318 167Google Scholar

    [32]

    Chen J, Ullmaier H, Floβdorf T, Kuhnlein W, Duwe R, Carsughi F, Broome T 2001 J. Nucl. Mater. 298 248Google Scholar

    [33]

    Oak Ridge National Laboratory 2020 Spallation neutron Source Second Target Station Conceptual Design Report Volume 1: Overview, Technical experimental system S01010000-TR0001, R00

    [34]

    Iwamoto Y, Meigo S, Hashimoto S 2020 J. Nucl. Mater. 538 1522Google Scholar

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [3] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [4] 冉琴, 王欢, 钟睿, 伍建春, 邹宇, 汪俊. 钨中不同构型的双自间隙原子扩散行为研究. 物理学报, 2019, 68(12): 126701. doi: 10.7498/aps.68.20190310
    [5] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [6] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [7] 姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞. H,He对Ti3SiC2材料力学性能影响的第一性原理研究. 物理学报, 2016, 65(2): 026202. doi: 10.7498/aps.65.026202
    [8] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [9] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [10] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [11] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [12] 孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛. 基于1/f 噪声变化的pn结二极管辐射效应退化机理研究. 物理学报, 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [13] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [14] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [15] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [16] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [19] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
计量
  • 文章访问数:  2233
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-13
  • 修回日期:  2024-02-16
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回