搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al+光钟态“幻零”波长的理论计算

魏远飞 唐志明 李承斌 黄学人

引用本文:
Citation:

Al+光钟态“幻零”波长的理论计算

魏远飞, 唐志明, 李承斌, 黄学人

Theoretical calculation of “tune-out” wavelengths for clock states of Al+

Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren
PDF
HTML
导出引用
  • 本文使用组态相互作用加多体微扰理论方法对Al+光钟态3s2 1S0和3s3p 3P0的“幻零”波长进行了理论计算. 3s2 1S0态的“幻零”波长为266.994(1) nm, 3s3p 3P0态的“幻零”波长为184.56(7) nm, 174.4(1) nm, 121.5(1) nm和119.7(2) nm. 精确测量这些“幻零”波长, 有助于高精度确定光钟态相关跃迁的振子强度或者约化矩阵元, 进而降低Al+光钟黑体辐射频移评估的不确定度. 同时, 对这些“幻零”波长的精密测量, 对研究Al+原子结构具有重要意义.
    In quantum optical experiments, the polarizabilities of atomic systems play a very important role, which can be used to describe the interactions of atomic systems with external electromagnetic fields. When subjected to a specific electric field such as a laser field with a particular frequency, the frequency-dependent electric-dipole (E1) dynamic polarizability of an atomic state can reach zero. The wavelength corresponding to such a frequency is referred to as the “turn-out” wavelength. In this work, the “turn-out” wavelengths for the 3s2 1S0 and 3s3p 3P0 clock states of Al+ are calculated by using the configuration interaction plus many-body perturbation theory (CI+MBPT) method. The values of energy and E1 reduced matrix elements of low-lying states of Al+ are calculated. By combining these E1 reduced matrix elements with the experimental energy values, the E1 dynamic polarizabilities of the 3s2 1S0 and 3s3p 3P0 clock states are determined in the angular frequency range of (0, 0.42 a.u.). The “turn-out” wavelengths are found at the zero-crossing points of the frequency-dependent dynamic polarizability curves for both the 3s2 1S0 and 3s3p 3P0 states. For the ground state 3s2 1S0, a single “turn-out” wavelength at 266.994(1) nm is observed. On the other hand, the excited state 3s3p 3P0 exhibits four distinct “turn-out” wavelengths, namely 184.56(1) nm, 174.433(1) nm, 121.52(2) nm, and 119.71(2) nm. The contributions of individual resonant transitions to the dynamic polarizabilities at the “turn-out” wavelengths are examined. It is observed that the resonant lines situated near a certain “turn-out” wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. When analyzing these data, we recommend accurately measuring these “turn-out” wavelengths to accurately determine the oscillator strengths or reduced matrix elements of the relevant transitions. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Al+ optical clock and suppressing the systematic uncertainty. Meanwhile, precisely measuring these “turn-out” wavelengths is also helpful for further exploring the atomic structure of Al+.
      通信作者: 李承斌, cbli@wipm.ac.cn ; 黄学人, hxueren@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11934014, 11904387, 11704076, U1732140)和国家重大研究发展计划(批准号: 2017YFA0304401, 2017YFA0304402)资助的课题.
      Corresponding author: Li Cheng-Bin, cbli@wipm.ac.cn ; Huang Xue-Ren, hxueren@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, U1732140) and the National High Technology Research and Development Program of China (Grant Nos. 2017YFA0304401, 2017YFA0304402).
    [1]

    Chaudhuri R K, Das B P, Freed K F 1998 J. Chem. Phys. 108 2556Google Scholar

    [2]

    Dong H, Jiang J, Wu Z W, Dong C Z, Gaigalas G 2021 Chin. Phys. B 30 043103Google Scholar

    [3]

    Zhang T X, Li J G, Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese ) [张婷贤, 李冀光, 刘建鹏 2018 物理学报 67 053101]Google Scholar

    Zhang T X, Li J G, Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese )Google Scholar

    [4]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [5]

    Cui K F, Chao S J, Sun C L, et al. 2022 Eur. Phys. J. D 76 140Google Scholar

    [6]

    Keller J, Burgermeister T, Kalincev D, et al. 2019 Phys. Rev. A 99 013405Google Scholar

    [7]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [8]

    Kar S, Wang Y S, Wang Y, Ho Y K 2018 Can. J. Phys. 96 633Google Scholar

    [9]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511Google Scholar

    [10]

    Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518Google Scholar

    [11]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102Google Scholar

    [12]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101Google Scholar

    [13]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(RGoogle Scholar

    [14]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. lett. 109 243004Google Scholar

    [15]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [16]

    Reader J, Acquista N, Sansonetti C J, Sansonetti J E 1990 Astrophys. J. Suppl. Ser. 72 831Google Scholar

    [17]

    Samain D 1995 Astron. Astrophys. Suppl. Ser. 113 237

    [18]

    Morton D C 1991 Astrophys. J. Suppl. Ser. 77 119Google Scholar

    [19]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [20]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002Google Scholar

    [21]

    Wu L, Wang Xia, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011Google Scholar

    [22]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [23]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199Google Scholar

    [24]

    Tang Z M, Yu Y M, Dong C Z 2018 Chin. Phys. B 27 063101Google Scholar

    [25]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [26]

    Kumar R, Chattopadhyay S, Angom D, Mani B K 2021 Phys. Rev. A 103 022801Google Scholar

    [27]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin R G 2009 Eur. Phys. J. D 53 15Google Scholar

    [28]

    Johnson W R, Safronova M S, Safronova U I 1997 Phys. Scr. 56 252Google Scholar

    [29]

    Stanek M, Glowacki L, Migdalek J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2985Google Scholar

    [30]

    Das B P, Idrees M 1990 Phys. Rev. A 42 6900Google Scholar

    [31]

    Fischer C F 2009 Phys. Scr. T134 014019Google Scholar

    [32]

    Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215Google Scholar

  • 图 1  3s2 1S0态和3s3p 3P0态的静态极化率随态求和计算中所考虑激发态最高主量子数n的收敛趋势

    Fig. 1.  Trend of change of the static polarizabilities for the 3s2 1S0 and 3s3p 3P0 states with the respect to the highest principle quantum number n of the excited states included in the sum-over-states calculations.

    图 2  Al+的光钟态的动力学极化率 (a) 3s2 1S0态的动力学极化率; (b) 3s2 1S0态在波长267.02—266.98 nm范围内的动力学极化率; (c) 3s3p 3P0态的动力学极化率

    Fig. 2.  Dynamic polarizabilities α(ω) of the clock states in Al+: (a) Dynamic polarizabilities α(ω) of the 3s2 1S0 state in Al+; (b) dynamic polarizabilities α(ω) of the 3s2 1S0 state in Al+ in the wavelength range between 267.02−266.98 nm; (c) dynamic polarizabilities α(ω) of the 3s3p 3P0 state in Al+.

    表 1  Al+基态和激发态能级的能量值(单位: cm–1), Diff.是CI+MBPT+Breit得到的值与NIST值的相对偏差

    Table 1.  Energies of 27 low-lying energy levels of Al+ (in cm–1), Diff. represents the relative deviation between the value obtained from CI+MBPT+Breit and the NIST value.

    State CI CI+MBPT +Breit NIST Diff./% Refs.
    3s2 1S0 376617 381043 380973 381308 –0.088 381332 [19], 379582 [26], 381287 [27], 382024 [28]
    3s3p 3P0 36256 37342 37344 37393.03 –0.13 37396 [19], 37395 [26], 37374 [27], 37191 [28]
    3s3p 3P1 36318 37407 37405 37453.91 –0.13 37457 [19], 37452 [26], 37457 [28], 36705 [29]
    3p2 1P1 59538 59905 59893 59852.02 0.069 59768 [19], 60111 [26], 60723 [27], 54410 [28], 63000 [30]
    3s4s 3S1 90008 91254 91233 91274.50 –0.045 91279 [19], 91043 [26], 91262 [27], 91274 [28]
    3p2 3P1 92660 94107 94097 94147.46 –0.053 94151 [19], 93380 [26], 93735 [28]
    3s3d 3D1 94171 95490 95462 95551.44 –0.093 95527 [19], 95253 [26], 95695 [28]
    3s4p 3P1 103975 105387 105366 105441.50 –0.071
    3s4p 1P1 105574 106880 106858 106920.56 –0.058
    3p2 1S0 110488 111779 111779 111637.33 0.11
    3s5s 3S1 118590 120047 120022 120092.919 –0.059
    3s4d 3D1 119971 121422 121395 121484.252 –0.073
    3s5p 3P1 124142 125648 125624 125708.828 –0.068
    3s5p 1P1 124322 125814 125790 125869.015 –0.063
    3s6s 3S1 130638 132160 132134 132215.52 –0.061
    3s5d 3D1 131247 132761 132734 132822.95 –0.067
    3s6p 1P1 133307 134861 134835 134919.40 –0.062
    3s6p 3P1 133409 134954 134928 135015.70 –0.065
    3s6d 3D1 137210 138754 138727 138814.87 –0.064
    3s7p 1P1 138244 139828 139802 139918.98 –0.084
    3s7p 3P1 138422 139987 139960 140091.9 –0.094
    3s8p 1P1 140927 142519 142493 142961.20 –0.33
    3s8p 3P1 141127 142711 142685 143166.76 0.34
    3s7d 3D1 140741 142300 142274 142365.54 –0.065
    3s9p 1P1 143591 145260 145233 144941.10 0.20
    3s9s 3S1 142835 144377 144350 144644.14 –0.20
    3s8d 3D1 143118 144686 144658 144642.0 0.012
    下载: 导出CSV

    表 2  使用CI+MBPT方法得到的Al+光钟态3s2 1S0和3s3p 3P0的电偶极跃迁约化矩阵元(单位: a.u.)

    Table 2.  Reduced matrix elements of the E1 transitions for the 3s2 1S0 and 3s3p 3P0 clock states of Al+, obtained by using the CI+MBPT method (in a.u.).

    Method CI CI+MBPT Recommend Refs.
    Gauge Length Velocity Length Velocity
    3s2 1S0-3s3p 3P1 0.0092 0.0101 0.0098 0.0105 0.0098(13) 0.01513 [26]
    3s2 1S0-3s3p 1P1 3.1830 3.1572 3.1156 3.1156 3.116(67) 3.112 [19]
    2.840 [26]
    3s2 1S0-3s4p 3P1 0.0018 0.0017 0.0022 0.0018 0.002(1)
    3s2 1S0-3s4p 1P1 0.0844 0.0781 0.0460 0.0737 0.046(38) 0.045 [19]
    3s2 1S0-3s5p 3P1 0.0037 0.0038 0.0051 0.0043 0.005(2)
    3s2 1S0-3s5p 1P1 0.0474 0.0502 0.0662 0.0491 0.066(19)
    3s2 1S0-3s6p 1P1 0.0595 0.0610 0.0704 0.0586 0.070(12)
    3s2 1S0-3s6p 3P1 0.0013 0.0014 0.0023 0.0017 0.002(1)
    3s2 1S0-3s7p 1P1 0.0575 0.0582 0.0638 0.0551 0.064(9)
    3s2 1S0-3s7p 3P1 0.0015 0.0015 0.0022 0.0019 0.002(1)
    3s2 1S0-3s8p 1P1 0.0493 0.0496 0.0505 0.0448 0.051(6)
    3s2 1S0-3s8p 3P1 0.0199 0.0200 0.0250 0.0220 0.025(5)
    3s2 1S0-3s9p 1P1 0.0759 0.0758 0.0784 0.0718 0.078(7)
    3s3p 3P0-3s4s 3S1 0.8936 0.8888 0.8979 0.8926 0.898(10) 0.900 [19]
    3s3p 3P0-3p2 3P1 1.8870 1.8737 1.8394 1.8789 1.839(48) 1.836 [19]
    3s3p 3P0-3s3d 3D1 2.2623 2.2820 2.2350 2.2626 2.235(47) 2.236 [19]
    3s3p 3P0-3s5s 3S1 0.2671 0.2652 0.2690 0.2661 0.269(4)
    3s3p 3P0-3s4d 3D1 0.4651 0.4746 0.4456 0.4612 0.446(28)
    3s3p 3P0-3s6s 3S1 0.1492 0.1481 0.1505 0.1486 0.151(2)
    3s3p 3P0-3s5d 3D1 0.2058 0.2118 0.1921 0.2029 0.192(20)
    3s3p 3P0-3s7s 3S1 0.0421 0.0418 0.0414 0.0422 0.041(1)
    3s3p 3P0-3s6d 3D1 0.1199 0.1242 0.1097 0.1178 0.110(13)
    3s3p 3P0-3s8s 3S1 0.1012 0.1004 0.1027 0.1005 0.103(2)
    3s3p 3P0-3s7d 3D1 0.0802 0.0836 0.0722 0.0787 0.072(12)
    3s3p 3P0-3s9s 3S1 0.0990 0.0983 0.0991 0.0986 0.099(1)
    3s3p 3P0-3s8d 3D1 0.0642 0.0673 0.0571 0.0630 0.057(10)
    下载: 导出CSV

    表 3  相关跃迁对两个光钟态3s2 1S0和3s3p 3P0的静态极化率α(0)的贡献

    Table 3.  Contributions of individual transitions to the static polarizabilities α(0) for 3s2 1S0 and 3s3p 3P0.

    Transition Contributions Ref.
    $ \alpha \left(0\right)( $3s2 1S0$ ) $
    3s2 1S0-3s3p 3P1 0.003
    3s2 1S0-3s3p 1P1 23.73 23.661 [19]
    23.7294 [27]
    3s2 1S0-3s4p 3P1 6.5×10–6
    3s2 1S0-3s4p 1P1 0.0029 0.003 [19]
    3s2 1S0-3s5p 3P1 3.0×10–5
    3s2 1S0-3s5p 1P1 0.0051
    3s2 1S0-3snp 3P1, n = 6—8 0.0006
    3s2 1S0-3snp 1P1, n = 6—9 0.0184
    Others 0.1135
    Core 0.265 [19] 0.268 [27]
    VC –0.019 [19]
    Total 24.1169 24.048 [19]
    24.1396 [27]
    $ \alpha \left(0\right)( $3s2 1S0$ ) $
    3s3p 3P0-3s4s 3S1 2.1886 2.197 [19]
    2.1860 [27]
    3s3p 3P0-3p2 3P1 8.7226 8.687 [19]
    8.6830 [27]
    3s3p 3P0-3s3d 3D1 12.5817 12.568 [19]
    12.6533 [27]
    3s3p 3P0-3s5s 3S1 0.1281
    3s3p 3P0-3s4d 3D1 0.3451
    3s3p 3P1-3sns 3S1, n = 6—9 0.0656
    3s3p 3P1-3snd 3D1, n = 5—8 0.0855
    Others 0.2117
    Core 0.256 [19] 0.268 [27]
    VC –0.010 [19]
    Total 24.5840 24.543 [19]
    $ {{\Delta }}\alpha \left(0\right) $ 0.467 0.495 [19]
    0.482 [27]
    0.426Expt.[4]
    下载: 导出CSV

    表 4  在“幻零”波长$ {\lambda }_{0} $处相关跃迁对两个光钟态3s2 1S0和3s3p 3P0的动力学极化率α($ {\lambda }_{0} $)的贡献

    Table 4.  Breakdown of the contributions of individual transitions to the dynamic polarizabilities α($ {\lambda }_{0} $) at the “tune-out” wavelengths $ {\lambda }_{0} $, for the 3s2 1S0 and 3s3p 3P0 clock states of Al+.

    3s2 1S0 3s3p 3P0
    $ {\lambda }_{0} $/nm 266.994(1) 184.56(7) 174.4(1) 121.5(1) 119.7(2)
    $ {\omega }_{0} $/a.u. 0.170653(2) 0.24688(7) 0.26171(15) 0.3750(3) 0.3806(6)
    $ {\alpha }_{0}\left({\lambda }_{0}\right)( $3s2 1S0$ ) $
    3s2 1S0-3s3p 3P1 39.3927 –0.0003 0.0003 –9.1×10–5 –8.7×10–5
    3s2 1S0-3s3p 1P1 39.0038 131.4864 287.4679 –26.6523 –25.0333
    3s2 1S0-3s4p 3P1 7.5×10–6 8.9×10–6 9.3×10–6 1.7×10–5 1.8×10–5
    3s2 1S0-3s4p 1P1 0.0033 0.0039 0.0041 0.0071 0.0074
    3s2 1S0-3s5p 3P1 3.3×10–5 3.7×10–5 3.8×10–5 5.3×10–5 5.4×10–5
    3s2 1S0-3s5p 1P1 0.0056 0.0062 0.0064 0.0089 0.0091
    3s2 1S0-3snp 3P1, n = 6—8 0.0007 0.0008 0.0008 0.0010 0.0010
    3s2 1S0-3snp 1P1, n = 6—9 0.0198 0.0216 0.0221 0.0281 0.0285
    Others 0.1135 0.1135 0.1135 0.1135 0.1135
    Core 0.265 0.265 0.265 0.265 0.265
    VC –0.019 –0.019 –0.019 –0.019 –0.019
    Total 0 131.8781 287.8605 –26.2478 –24.6278
    $ {\alpha }_{0}\left({\lambda }_{0}\right)( $3s3p 3P0$ ) $
    3s3p 3P0-3s4s 3S1 4.2349 –195.2541 –16.5755 –1.6425 –1.5594
    3s3p 3P0-3p2 3P1 15.4522 98.4756 –429.0192 –7.9128 7.4784
    3s3p 3P0-3s3d 3D1 21.4976 95.2803 444.0076 –12.5559 –11.8356
    3s3p 3P0-3s5s 3S1 0.1612 0.2245 0.2466 12.9773 –6.3146
    3s3p 3P0-3s4d 3D1 0.4305 0.5901 0.6448 8.1466 26.1561
    3s3p 3P1-3sns 3S1, n = 6—9 0.0765 0.0936 0.0987 0.2203 0.2388
    3s3p 3P1-3snd 3D1, n = 5—8 0.1001 0.1234 0.1303 0.3005 0.3264
    Others 0.2117 0.2117 0.2117 0.2117 0.2117
    Core 0.265 0.265 0.265 0.265 0.265
    VC –0.010 –0.010 –0.010 –0.010 –0.010
    Total 42.4197 0 0 0 0
    下载: 导出CSV
  • [1]

    Chaudhuri R K, Das B P, Freed K F 1998 J. Chem. Phys. 108 2556Google Scholar

    [2]

    Dong H, Jiang J, Wu Z W, Dong C Z, Gaigalas G 2021 Chin. Phys. B 30 043103Google Scholar

    [3]

    Zhang T X, Li J G, Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese ) [张婷贤, 李冀光, 刘建鹏 2018 物理学报 67 053101]Google Scholar

    Zhang T X, Li J G, Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese )Google Scholar

    [4]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [5]

    Cui K F, Chao S J, Sun C L, et al. 2022 Eur. Phys. J. D 76 140Google Scholar

    [6]

    Keller J, Burgermeister T, Kalincev D, et al. 2019 Phys. Rev. A 99 013405Google Scholar

    [7]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [8]

    Kar S, Wang Y S, Wang Y, Ho Y K 2018 Can. J. Phys. 96 633Google Scholar

    [9]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511Google Scholar

    [10]

    Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518Google Scholar

    [11]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102Google Scholar

    [12]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101Google Scholar

    [13]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(RGoogle Scholar

    [14]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. lett. 109 243004Google Scholar

    [15]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [16]

    Reader J, Acquista N, Sansonetti C J, Sansonetti J E 1990 Astrophys. J. Suppl. Ser. 72 831Google Scholar

    [17]

    Samain D 1995 Astron. Astrophys. Suppl. Ser. 113 237

    [18]

    Morton D C 1991 Astrophys. J. Suppl. Ser. 77 119Google Scholar

    [19]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [20]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002Google Scholar

    [21]

    Wu L, Wang Xia, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011Google Scholar

    [22]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [23]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199Google Scholar

    [24]

    Tang Z M, Yu Y M, Dong C Z 2018 Chin. Phys. B 27 063101Google Scholar

    [25]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [26]

    Kumar R, Chattopadhyay S, Angom D, Mani B K 2021 Phys. Rev. A 103 022801Google Scholar

    [27]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin R G 2009 Eur. Phys. J. D 53 15Google Scholar

    [28]

    Johnson W R, Safronova M S, Safronova U I 1997 Phys. Scr. 56 252Google Scholar

    [29]

    Stanek M, Glowacki L, Migdalek J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2985Google Scholar

    [30]

    Das B P, Idrees M 1990 Phys. Rev. A 42 6900Google Scholar

    [31]

    Fischer C F 2009 Phys. Scr. T134 014019Google Scholar

    [32]

    Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215Google Scholar

  • [1] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [3] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [4] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [5] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究. 物理学报, 2018, 67(5): 053101. doi: 10.7498/aps.67.20172261
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 物理学报, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [11] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [13] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换. 物理学报, 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [14] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度. 物理学报, 2008, 57(1): 61-66. doi: 10.7498/aps.57.61
    [15] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, 2006, 55(12): 6315-6319. doi: 10.7498/aps.55.6315
    [16] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 物理学报, 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [17] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [18] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究. 物理学报, 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [19] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  1946
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-03-05
  • 上网日期:  2024-04-03
  • 刊出日期:  2024-05-20

/

返回文章
返回