搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

532 nm响应增强的AlGaAs光电阴极

王东智 张益军 李诗曼 童泽昊 唐嵩 石峰 焦岗成 程宏昌 富容国 钱芸生 曾玉刚

引用本文:
Citation:

532 nm响应增强的AlGaAs光电阴极

王东智, 张益军, 李诗曼, 童泽昊, 唐嵩, 石峰, 焦岗成, 程宏昌, 富容国, 钱芸生, 曾玉刚

AlGaAs photocathode with enhanced response at 532 nm

Wang Dong-Zhi, Zhang Yi-Jun, Li Shi-Man, Tong Ze-Hao, Tang Song, Shi Feng, Jiao Gang-Cheng, Cheng Hong-Chang, Fu Rong-Guo, Qian Yun-Sheng, Zeng Yu-Gang
PDF
HTML
导出引用
  • AlGaAs光电阴极具有响应速度快和光谱响应范围可调的特性, 可被应用于水下光通信领域. 为了解决AlGaAs发射层较低的光吸收限制其量子效率提高的问题, 利用分布式布拉格反射镜(DBR)结构对特定波长光的反射作用, 将透过光重新反射回发射层进一步提高吸收率, 从而增强阴极在532 nm波长处的响应能力. 通过求解一维连续性方程, 建立了具有DBR结构的AlGaAs光电阴极光谱响应模型. 采用时域有限差分法, 分析了DBR结构中子层周期对数、子层材料以及发射层、缓冲层厚度对发射层吸收率的影响, 对比了有无DBR结构AlGaAs光电阴极的光吸收分布. 结果表明, 周期对数为20、子层材料为Al0.7Ga0.3As/AlAs的DBR结构对532 nm光的反射效果最优. 基于该DBR结构, 发射层和缓冲层厚度分别为495 nm和50 nm时, 发射层对532 nm光具有最佳吸收率. 通过对外延生长的AlGaAs光电阴极进行激活实验, 结果表明具有DBR结构的AlGaAs光电阴极在532 nm波长处的光谱响应率相比无DBR结构的AlGaAs光电阴极光谱响应率提升了约1倍.
    The AlGaAs photocathode can be used in the field of underwater optical communication because of its fast response speed and adjustable spectral response range. In order to solve the problem that the low light absorption of the AlGaAs emission layer limits the improvement of its quantum efficiency, the distributed Bragg reflector (DBR) structure is used to reflect the light at a specific wavelength back to the emission layer to further increase the absorption rate, thus improving the response capability of the photocathode at 532 nm. The spectral response model of the AlGaAs photocathode with DBR structure is obtained by solving one-dimensional continuity equation. The optical model of the AlGaAs photocathode with enhanced response at 532 nm is established by the finite-difference time-domain method. The effects of the sublayer periodic pairs, the sublayer material and the thickness of emission layer and buffer layer on the absorption rate of emission layer are analyzed. The light absorption distributions of AlGaAs photocathode with and without DBR structure are compared, and the influence mechanism of DBR structure on the blue-green light absorption capacity of AlGaAs photocathode emission layer is clarified, which can provide a theoretical basis for designing its structural parameters. The results show that the DBR structure with a periodic pair of 20 and Al0.7Ga0.3As/AlAs has the best reflection effect on 532 nm light. Based on the DBR structure, when the thickness of the emission layer and buffer layer are 495 nm and 50 nm, respectively, the emission layer has the best absorption rate of 532 nm light. Furthermore, two kinds of AlGaAs photocathodes with and without DBR structure are prepared by the metal-organic chemical vapor deposition technology, and the reflectivity and profile structure of the grown samples are characterized. Then the Cs/O activation experiments are performed to compare the spectral response curves. It is found that the spectral response of the AlGaAs photocathode sample with DBR structure at 532 nm wavelength is about twice that of the sample without DBR structure.
      通信作者: 张益军, zhangyijun423@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62271259, U2141239)、微光夜视技术重点实验室基金(批准号: J20220102)和江苏省研究生科研与实践创新计划(批准号: KYCX23_0431)资助的课题.
      Corresponding author: Zhang Yi-Jun, zhangyijun423@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271259, U2141239 ), the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation of China (Grant No. J20220102), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23_0431) .
    [1]

    Guo X, Shi F, Jia T T, Zhang R Y, Du J J, Chen P, Wu H Y, Cheng H C, Zhang Y J 2023 IEEE Photonics J. 15 6801005Google Scholar

    [2]

    Schindler P, Riley D C, Bargatin I, Sahasrabuddhe K, Schwede J W, Sun S, Pianetta P, Shen Z X, Howe R T, Melosh N A 2019 ACS Energy Lett. 4 2436Google Scholar

    [3]

    Bae J K, Andorf M, Bartnik A, Galdi A, Cultrera L, Maxson J, Bazarov I 2022 AIP Adv. 12 095017Google Scholar

    [4]

    梁羽铁, 杨一玻, 赵宇翔 2020 物理 49 525Google Scholar

    Liang Y T, Yang Y B, Zhao Y X 2020 Physics 49 525Google Scholar

    [5]

    Morishita H, Ohshima T, Otsuga K, Kuwahara M, Agemura T, Ose Y 2021 Ultramicroscopy 230 113386Google Scholar

    [6]

    Chen X L, Tang G H, Wang D C, Xu P X 2018 Opt. Mater. Express 8 3155Google Scholar

    [7]

    Xu Y, Zhang Y J, Feng C, Shi F, Zou J J, Chen X L, Chang B K 2016 Opt. Commun. 380 320Google Scholar

    [8]

    Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02Google Scholar

    [9]

    Spagnolo G S, Cozzella L, Leccese F 2020 Sensors 20 2261Google Scholar

    [10]

    Kaushal H, Kaddoum G 2016 IEEE Access 4 1518Google Scholar

    [11]

    曾凤娇, 杨康建, 晏旭, 赵孟孟, 杨平, 文良华 2021 激光与光电子学进展 58 0300002Google Scholar

    Zeng F J, Yang K J, YAN X, Zhao M M, Yang P, Wen L H 2021 Laser Optoelectron. Prog. 58 0300002Google Scholar

    [12]

    李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓 2021 物理学报 70 084203Google Scholar

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z 2021 Acta Phys. Sin. 70 084203Google Scholar

    [13]

    Chen X L, Zhao J, Chang B K, Yu X H, Hao G H, Xu Y, Cheng H C 2013 J. Appl. Phys. 113 213105Google Scholar

    [14]

    Chen X L, Jin M C, Zeng Y G, Hao G H, Zhang Y J, Chang B K, Shi F, Cheng H C 2014 Appl. Opt. 53 7709Google Scholar

    [15]

    Chen X L, Zhao J, Chang B K, Hao G H, Xu Y, Zhang Y J, Jin M C 2014 Mater. Sci. Semicond. Process. 18 122Google Scholar

    [16]

    Li S M, Zhang Y J, Wang Z H, Wang D Z, Tang S, Zhang J J, Shi F, Jiao G C, Cheng H C, Hao G H 2023 Opt. Express 31 26014Google Scholar

    [17]

    Spicer W E 1977 Appl. Phys. 12 115Google Scholar

    [18]

    Xia J, Beomhoan O, Lee S G, Lee E 2005 Opt. Laser Technol. 37 125Google Scholar

    [19]

    Wang S C, Lu T C, Kao C C, Chu J T, Huang G S, Kuo H C, Chen S W, Kao T T, Chen J R, Lin L F 2007 Jpn. J. Appl. Phys. 46 5397Google Scholar

    [20]

    Liu L J, Wu Y D, Wang Y, An J M, Hu X W 2018 Optoelectron. Lett. 14 342Google Scholar

    [21]

    Jahed M, Gustavsson J S, Larsson A 2021 IEEE J. Quantum Electron. 57 2400307Google Scholar

    [22]

    Martinelli R U, Fisher D G 1974 Proc. IEEE 62 1339Google Scholar

    [23]

    Zou J J, Chang B K, Chen H L, Liu L 2007 J. Appl. Phys. 101 033126Google Scholar

    [24]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [25]

    Sun X J, Hu L Z, Song H, Li Z M, Li D B, Jiang H, Miao G Q 2009 Solid State Electron 53 1032Google Scholar

    [26]

    Chen X L, Chang B K, Zhao J, Hao G H, Jin M C, Xu Y 2013 Opt. Commun. 309 323Google Scholar

    [27]

    Zhang Y J, Zhang K M, Li S M, Li S, Qian Y S, Shi F, Jiao G C, Miao Z, Guo Y L, Zeng Y G 2020 J. Appl. Phys. 128 173103Google Scholar

  • 图 1  AlGaAs光电阴极结构示意图 (a) 设计的自上而下结构; (b) 传统结构与设计结构的光路对比

    Fig. 1.  Structure diagram of AlGaAs photocathode: (a) The designed top-down structure; (b) comparison of the optical path between the traditional structure and the designed structure.

    图 2  FDTD仿真区域和监视器设置

    Fig. 2.  FDTD simulation region and monitor settings.

    图 3  不同子层交替对数的DBR层反射谱

    Fig. 3.  Reflectivity of DBR layer with different sublayer alternating pairs.

    图 4  DBR层的光学性质 (a) 不同子层材料的反射谱; (b) 不同子层材料的消光系数

    Fig. 4.  Optical properties of DBR layer: (a) Reflectivity for different sublayer materials; (b) extinction coefficient of different sublayer materials.

    图 5  发射层吸收率随阴极厚度的变化 (a) 发射层厚度; (b) 缓冲层厚度

    Fig. 5.  Variation of emission layer absorptivity with cathode thickness: (a) Different emission layer thickness Le; (b) different buffer layer thickness Lb.

    图 6  有无DBR结构情况下的AlGaAs光电阴极在532 nm处的光吸收强度分布图

    Fig. 6.  Optical absorption intensity distribution at 532 nm of AlGaAs photocathodes with or without DBR structure.

    图 7  结构A与结构B阴极样品SEM图

    Fig. 7.  SEM images of cathode samples with structure A and structure B.

    图 8  (a)结构A与(b)结构B阴极样品反射率实测、理论和拟合结果对比图

    Fig. 8.  Comparison of measured, theoretical and fitting results of reflectivity of cathode samples with (a) structure A and (b) structure B.

    图 9  (a)结构A与(b)结构B 阴极样品的Cs/O激活光电流曲线

    Fig. 9.  Cs/O activation photocurrent curves of cathode samples with structure A and structure B.

    图 10  结构A与结构B 阴极样品的光谱响应实测和拟合曲线与反射率实测曲线

    Fig. 10.  Measured and fitted spectral response curves and measured reflectivity curves of cathode samples with structure A and structure B.

    表 1  阴极样品结构参数拟合结果

    Table 1.  Fitting results of structure parameters of the cathode samples.

    材料结构A结构B
    设计值/nm实际值/nm设计值/nm实际值/nm
    Al0.63Ga0.37As发射层495500495522
    Al0.8Ga0.2As缓冲层50605060
    DBR层Al0.7Ga0.3As子层3634.9
    DBR层AlAs子层4138.8
    下载: 导出CSV

    表 2  阴极性能参量拟合结果

    Table 2.  Fitting results of cathode performance parameters.

    结构A结构B描述
    P00.360.25表面电子逸出概率
    K0.20.6表面势垒因子
    Sv/(cm·s–1)4×1041×105后界面电子复合速率
    下载: 导出CSV
  • [1]

    Guo X, Shi F, Jia T T, Zhang R Y, Du J J, Chen P, Wu H Y, Cheng H C, Zhang Y J 2023 IEEE Photonics J. 15 6801005Google Scholar

    [2]

    Schindler P, Riley D C, Bargatin I, Sahasrabuddhe K, Schwede J W, Sun S, Pianetta P, Shen Z X, Howe R T, Melosh N A 2019 ACS Energy Lett. 4 2436Google Scholar

    [3]

    Bae J K, Andorf M, Bartnik A, Galdi A, Cultrera L, Maxson J, Bazarov I 2022 AIP Adv. 12 095017Google Scholar

    [4]

    梁羽铁, 杨一玻, 赵宇翔 2020 物理 49 525Google Scholar

    Liang Y T, Yang Y B, Zhao Y X 2020 Physics 49 525Google Scholar

    [5]

    Morishita H, Ohshima T, Otsuga K, Kuwahara M, Agemura T, Ose Y 2021 Ultramicroscopy 230 113386Google Scholar

    [6]

    Chen X L, Tang G H, Wang D C, Xu P X 2018 Opt. Mater. Express 8 3155Google Scholar

    [7]

    Xu Y, Zhang Y J, Feng C, Shi F, Zou J J, Chen X L, Chang B K 2016 Opt. Commun. 380 320Google Scholar

    [8]

    Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02Google Scholar

    [9]

    Spagnolo G S, Cozzella L, Leccese F 2020 Sensors 20 2261Google Scholar

    [10]

    Kaushal H, Kaddoum G 2016 IEEE Access 4 1518Google Scholar

    [11]

    曾凤娇, 杨康建, 晏旭, 赵孟孟, 杨平, 文良华 2021 激光与光电子学进展 58 0300002Google Scholar

    Zeng F J, Yang K J, YAN X, Zhao M M, Yang P, Wen L H 2021 Laser Optoelectron. Prog. 58 0300002Google Scholar

    [12]

    李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓 2021 物理学报 70 084203Google Scholar

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z 2021 Acta Phys. Sin. 70 084203Google Scholar

    [13]

    Chen X L, Zhao J, Chang B K, Yu X H, Hao G H, Xu Y, Cheng H C 2013 J. Appl. Phys. 113 213105Google Scholar

    [14]

    Chen X L, Jin M C, Zeng Y G, Hao G H, Zhang Y J, Chang B K, Shi F, Cheng H C 2014 Appl. Opt. 53 7709Google Scholar

    [15]

    Chen X L, Zhao J, Chang B K, Hao G H, Xu Y, Zhang Y J, Jin M C 2014 Mater. Sci. Semicond. Process. 18 122Google Scholar

    [16]

    Li S M, Zhang Y J, Wang Z H, Wang D Z, Tang S, Zhang J J, Shi F, Jiao G C, Cheng H C, Hao G H 2023 Opt. Express 31 26014Google Scholar

    [17]

    Spicer W E 1977 Appl. Phys. 12 115Google Scholar

    [18]

    Xia J, Beomhoan O, Lee S G, Lee E 2005 Opt. Laser Technol. 37 125Google Scholar

    [19]

    Wang S C, Lu T C, Kao C C, Chu J T, Huang G S, Kuo H C, Chen S W, Kao T T, Chen J R, Lin L F 2007 Jpn. J. Appl. Phys. 46 5397Google Scholar

    [20]

    Liu L J, Wu Y D, Wang Y, An J M, Hu X W 2018 Optoelectron. Lett. 14 342Google Scholar

    [21]

    Jahed M, Gustavsson J S, Larsson A 2021 IEEE J. Quantum Electron. 57 2400307Google Scholar

    [22]

    Martinelli R U, Fisher D G 1974 Proc. IEEE 62 1339Google Scholar

    [23]

    Zou J J, Chang B K, Chen H L, Liu L 2007 J. Appl. Phys. 101 033126Google Scholar

    [24]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [25]

    Sun X J, Hu L Z, Song H, Li Z M, Li D B, Jiang H, Miao G Q 2009 Solid State Electron 53 1032Google Scholar

    [26]

    Chen X L, Chang B K, Zhao J, Hao G H, Jin M C, Xu Y 2013 Opt. Commun. 309 323Google Scholar

    [27]

    Zhang Y J, Zhang K M, Li S M, Li S, Qian Y S, Shi F, Jiao G C, Miao Z, Guo Y L, Zeng Y G 2020 J. Appl. Phys. 128 173103Google Scholar

  • [1] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [2] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [3] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟. 物理学报, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [4] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [7] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [8] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [9] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [10] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [11] 张益军, 甘卓欣, 张瀚, 黄帆, 徐源, 冯琤. 超高真空系统中GaAlAs光电阴极的重新铯化研究. 物理学报, 2014, 63(17): 178502. doi: 10.7498/aps.63.178502
    [12] 卢小可, 郭茂田, 苏建坡, 弓巧侠, 武进科, 刘建立, 陈明, 马凤英. 太赫兹波段介质微腔光学特性研究. 物理学报, 2013, 62(8): 084208. doi: 10.7498/aps.62.084208
    [13] 刘文宝, 赵德刚, 江德生, 刘宗顺, 朱建军, 张书明, 杨辉. 高阻氮化镓外延层的异常光吸收. 物理学报, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [14] 乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂. 负电子亲和势GaN光电阴极光谱响应特性研究. 物理学报, 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [18] 杨文正, 侯洵, 陈烽, 杨青. BRD96N光调制吸收增强现象的实验研究. 物理学报, 2004, 53(1): 296-300. doi: 10.7498/aps.53.296
    [19] 张琦锋, 侯士敏, 张耿民, 刘惟敏, 薛增泉, 吴锦雷. Ag-BaO薄膜在电场作用下的可见——近红外波段光学吸收特性. 物理学报, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  448
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-08
  • 修回日期:  2024-03-29
  • 上网日期:  2024-04-17
  • 刊出日期:  2024-06-05

/

返回文章
返回