搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究

方语萱 杨益 夏志良 霍宗亮

引用本文:
Citation:

3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究

方语萱, 杨益, 夏志良, 霍宗亮

First-principles study of F adsorption by TiN with its oxide surface in three-dimensional NAND flash memory

Fang Yu-Xuan, Yang Yi, Xia Zhi-Liang, Huo Zong-Liang
PDF
HTML
导出引用
  • 随着3D NAND技术的发展, 存储阵列工艺的堆叠层数越来越高, 后栅工艺中金属钨(W)栅字线(WL)层填充的工艺也面临越来越严峻的挑战. 钨栅沉积工艺中的主要挑战在于氟攻击问题, 钨栅填充时产生的空洞导致了含氟(F)副产物的积聚, 并在后续高温制程的激发下, 扩散侵蚀其周边氧化物层, 致使字线漏电, 严重影响器件的良率及可靠性. 为改善氟攻击问题, 通常在钨栅沉积之前再沉积一层薄的氮化钛作为阻挡层. 然而在对栅极叠层组分分析中发现, F元素聚集在TiN薄膜表面, 并且难以通过退火排出. 本文采用第一性原理计算, 研究了TiN薄膜表面吸附含F物种的情况, 提出TiN的表面氧化能加剧对含F物种的吸附作用, 仿真结果指导了栅极工艺过程的优化方向. 基于第一性原理计算结果, 提出氨气吹扫表面处理方法, 有效改善了3D NAND中的氟攻击问题, 将字线漏电率降低25%, 晶圆翘曲度降低43%.
    Three-dimensional (3D) NAND flash memory is a key technology in the field of mainstream memory solutions, which is primarily due to its extremely low bit cost. The architecture of 3D NAND, characterized by its vertically stacked design, substantially enhances the capacity of individual chips. This advancement is completely consistent with the demands for high-capacity data storage in contemporary environments, securing its widespread adoption in diverse application scenarios. As storage density increases, the complexity of process integration increases, bringing new challenges. The word lines in 3D NAND are typically filled by using gate replacement techniques, and compared with chemical vapor deposition (CVD), atomic layer deposition (ALD) is favored for its superior step-coverage, especially for depositing tungsten (W) at the gate. However, due to the complexity of the replacement gate deposition structure, fluorine (F) residues are found in the voids of the tungsten metal gate filling structure and diffuse into the surrounding structure under subsequent process conditions, corroding other films such as silicon oxide and degrading device performance and reliability. To alleviate the problem of fluorine attack, a thin layer of titanium nitride is usually deposited as a barrier layer before deposition of tungsten gate, which blocks the fluorine in the tungsten gate and prevents its diffusion into the oxide layer. Previously, there were studies to increase the ability to stop F diffusion by varying the thickness of the F blocking layer (TiN). However, increasing the thickness of TiN will further increase the complexity of high aspect ratio etching in the 3D NAND process, which will have adverse effect on subsequent processes. To further minimize the effect of fluorine erosion, residual fluorine elements can be removed by introducing annealing in the subsequent process flow. In the actual 3D NAND process, elemental fluorine (F) is adsorbed and accumulates on the TiN surface, and is further activated by subsequent high-temperature processes, leading to severe fluorine erosion. The delay between TiN deposition and subsequent processing steps is hypothesized to facilitate fluorine adsorption due to the oxidation of TiN. This work corroborates this hypothesis through first-principles calculations, and demonstrates the role of TiN oxidation in fluorine adsorption. In this work, we evaluate the effect of this oxidation on the fluorine-blocking effectiveness of the TiN barrier layer. We simulate the adsorption of fluorine-containing by-products on TiN and its oxides, providing theoretical insights into mitigating fluorine attack. The higher degree of oxidation of TiN is more likely to cause F adsorption, and Ti exposed surface TiN is more prone to oxidation, which is more likely to cause F adsorption in unoxidized condition and oxidized condition. Based on these insights, we implemente an ammonia purge treatment in 3D NAND manufacturing, which effectively minimizes fluorine attack, reducing the leakage probability of word line by 25% and wafer warpage by 43%.
      通信作者: 夏志良, Albert_Xia@YMTC.com ; 霍宗亮, Zongliang_Huo@YMTC.com
    • 基金项目: 国家重点研发计划(批准号: 2023YFB4402500)资助的课题.
      Corresponding author: Xia Zhi-Liang, Albert_Xia@YMTC.com ; Huo Zong-Liang, Zongliang_Huo@YMTC.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFB4402500).
    [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [3]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p247

    [4]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [5]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [10]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [11]

    Blöchl P E, Kästner J, Först C J 2005 Handbook of Materials Modeling: Methods (Springer) p93

    [12]

    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook S E, Griffin J M, Yates J R, Mauri F 2012 Chem. Rev. 112 5733Google Scholar

    [13]

    Zhang W, Cai J, Wang D, Wang Q, Wang S 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi’an, China, August 16–19, 2010 pp7–11

    [14]

    Abrahams S, Bernstein J 1971 J. Chem. Phys. 55 3206Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Armstrong D, Perkins P 1969 Theor. Chim. Acta 15 413Google Scholar

    [17]

    Carosati E, Sciabola S, Cruciani G 2004 J. Med. Chem. 47 5114Google Scholar

    [18]

    Lennard-Jones J 1932 Trans. Faraday Soc. 28 333Google Scholar

    [19]

    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H 2007 Theor. Chem. Acc. 117 565Google Scholar

    [20]

    Nilsson K B 2005 Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents (Department of Chemistry, Swedish University of Agricultural Sciences) p7

    [21]

    Kuchitsu K, Konaka S 1966 J. Chem. Phys. 45 4342Google Scholar

    [22]

    Jebasty R M, Vidya R 2019 ACS Biomaster Sci. Eng. 5 2001Google Scholar

    [23]

    Izadi S, Anandakrishnan R, Onufriev A V 2014 J. Phys. Chem. Lett. 5 3863Google Scholar

  • 图 1  替换栅结构与氟攻击氧化物的示意图, 说明氧化物层被腐蚀的机理, 蓝色箭头表示退火后氟逸散的通道, 说明退火可以排出剩余的氟元素

    Fig. 1.  Schematic diagram of fluorine attacks oxide, illustrating the corrosion mechanism of the ox-ide layer in the W gate. The blue arrow indicates the channel for fluorine escape after annealing, illustrating that thermal processing can discharge the remaining F element.

    图 2  TiN沉积后经过不同等待时间后的F元素在W与TiN界面附近的浓度分布图

    Fig. 2.  Concentration distribution of element F near the W-TiN interface after TiN deposition after different waiting times.

    图 3  (a)洁净的N暴露面TiN 12层原子模型; (b)洁净的Ti暴露面TiN 12层原子模型

    Fig. 3.  (a) Clean N-exposed surface TiN 12-layer atomic model; (b) clean Ti-exposed surface TiN 12-layer atomic model.

    图 4  (a) TiN(111) N暴露表面吸附HF后的稳定结构; (b) TiN(111) N暴露表面吸附BF3后的稳定结构; (c) TiN(111) Ti暴露表面吸附HF后的稳定结构; (d) TiN(111) Ti暴露表面吸附BF3后的稳定结构

    Fig. 4.  (a) Stable structure of TiN(111) after adsorption of HF on the N exposed surface; (b) stable structure of TiN(111) after adsorption of BF3 on the N exposed surface; (c) stable structure of TiN(111) after adsorption of HF on the Ti exposed surface; (d) stable structure of TiN(111) after adsorption of BF3 on the Ti exposed surface.

    图 5  (a) TiO2(100)表面吸附HF后的稳定结构; (b) TiO2(100)表面吸附BF3后的稳定结构

    Fig. 5.  (a) Stable structure of HF adsorption on the TiO2(100) surface; (b) stable structure of BF3 adsorption on the TiO2(100) surface.

    图 6  (a) TiN(111)N暴露表面氧化产生TiON(111)的表面模型; (b) TiN(111)Ti暴露表面氧化产生TiON(111)的表面模型

    Fig. 6.  (a) Surface model of TiON(111) generated by oxidation of the N-exposed surface of TiN(111); (b) surface model of TiON(111) generated by oxidation of the Ti-exposed surface of TiN(111).

    图 7  (a) N暴露表面氧化后的TiON(111)表面吸附HF后的稳定结构; (b) N暴露表面氧化后的TiON(111) 表面吸附BF3后的稳定结构; (c) Ti暴露表面氧化后的TiON(111) 表面吸附HF后的稳定结构; (d) Ti暴露表面氧化后的TiON(111) 表面吸附BF3后的稳定结构

    Fig. 7.  (a) Stable structure of HF adsorption on the TiON(111) surface oxidized from the N-exposed surface; (b) stable structure of BF3 adsorption on the TiON(111) surface oxidized from the N-exposed surface; (c) stable structure of HF adsorption on the TiON(111) surface oxidized from the Ti-exposed surface; (d) stable structure of BF3 adsorption on the TiON(111) surface oxidized from the Ti-exposed surface.

    图 8  氨气处理前后失效概率对比

    Fig. 8.  Comparison of failure probability before and after ammonia treatment.

    图 9  氨气处理前后片弯曲度对比

    Fig. 9.  Comparison of wafer bow before and after ammonia treatment.

    图 10  氨气处理前后电阻值对比

    Fig. 10.  Comparison of resistance values before and after ammonia treatment.

    表 1  TiN(111) N暴露表面、TiN(111) Ti暴露表面吸附HF和BF3后的键长

    Table 1.  Bond lengths after HF and BF3 adsorption on the N-exposed surface of TiN(111) and the Ti-exposed surface of TiN(111).

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    N-TiN(111)HFN—H1.831.01(NH3)[20]–0.08
    BF3B—F1.331.31(BF3)[21]–0.02
    Ti-TiN(111)HFN—H1.651.01(NH3)–2.03
    Ti—F1.101.74(TiF4)[22]
    BF3Ti—F2.231.74(TiF4)–1.77
    B—F1.441.31(BF3)
    下载: 导出CSV

    表 2  TiO2(100) 表面吸附HF和BF3后的键长

    Table 2.  Bond lengths after HF and BF3 adsorption on the TiO2(100) surface.

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    TiO2(100)HFTi—F1.831.74(TiF4)–1.92
    O—H0.970.96(H2O)[23]
    TiO2(100)BF3Ti—F2.101.74(TiF4)–1.98
    B—F1.481.31(BF3)
    下载: 导出CSV

    表 3  TiON(111) N暴露表面、TiON(111) Ti暴露表面吸附HF和BF3后的键长

    Table 3.  Bond lengths after HF and BF3 adsorption on the N-exposed surface of TiON(111) and the Ti-exposed surface of TiON(111).

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    N-TiON(111)HFO—H1.860.96(H2O)–0.23
    BF3B—F1.321.31(BF3)–0.06
    Ti-TiON(111)HFO—H0.970.96(H2O)–2.28
    Ti—F2.181.74(TiF4)
    BF3Ti—F2.181.74(TiF4)–1.40
    B—F1.331.31(BF3)
    下载: 导出CSV
  • [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [3]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p247

    [4]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [5]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [10]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [11]

    Blöchl P E, Kästner J, Först C J 2005 Handbook of Materials Modeling: Methods (Springer) p93

    [12]

    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook S E, Griffin J M, Yates J R, Mauri F 2012 Chem. Rev. 112 5733Google Scholar

    [13]

    Zhang W, Cai J, Wang D, Wang Q, Wang S 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi’an, China, August 16–19, 2010 pp7–11

    [14]

    Abrahams S, Bernstein J 1971 J. Chem. Phys. 55 3206Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Armstrong D, Perkins P 1969 Theor. Chim. Acta 15 413Google Scholar

    [17]

    Carosati E, Sciabola S, Cruciani G 2004 J. Med. Chem. 47 5114Google Scholar

    [18]

    Lennard-Jones J 1932 Trans. Faraday Soc. 28 333Google Scholar

    [19]

    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H 2007 Theor. Chem. Acc. 117 565Google Scholar

    [20]

    Nilsson K B 2005 Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents (Department of Chemistry, Swedish University of Agricultural Sciences) p7

    [21]

    Kuchitsu K, Konaka S 1966 J. Chem. Phys. 45 4342Google Scholar

    [22]

    Jebasty R M, Vidya R 2019 ACS Biomaster Sci. Eng. 5 2001Google Scholar

    [23]

    Izadi S, Anandakrishnan R, Onufriev A V 2014 J. Phys. Chem. Lett. 5 3863Google Scholar

  • [1] 方语萱, 夏志良, 杨涛, 周文犀, 霍宗亮. 3D NAND闪存中氟攻击问题引起的字线漏电的改进. 物理学报, 2024, 73(6): 068502. doi: 10.7498/aps.73.20231557
    [2] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [3] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [6] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [7] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [9] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [10] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [11] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [12] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [13] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [14] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [15] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  366
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-08
  • 修回日期:  2024-04-17
  • 上网日期:  2024-05-08
  • 刊出日期:  2024-06-20

/

返回文章
返回