搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究

黄馨雨 张晋新 王信 吕玲 郭红霞 冯娟 闫允一 王辉 戚钧翔

引用本文:
Citation:

基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究

黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔

Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures

Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang
PDF
HTML
导出引用
  • 针对锗硅异质结双极晶体管(SiGe HBT)进行TCAD仿真建模, 基于SiGe HBT器件模型搭建低噪放大器(LNA)电路, 开展单粒子瞬态(SET)的混合仿真, 研究SET脉冲随离子不同LET值、入射角度的变化规律. 结果表明: 随着入射离子LET值的增大, LNA端口的SET脉冲的幅值增大, 振荡时间延长; 随着离子入射角的增大, LNA端口的SET脉冲的幅值先增大后减小, 振荡时间减小. 使用反模(IM)共射共基结构(Cascode)降低LNA对单粒子效应的敏感度, 验证了采用IM结构的LNA电路的相关射频性能. 针对离子于共基极(CB)晶体管、共发射极(CE)晶体管两种位置入射进行SET实验. 实验结果与本实验中的正向模式相比, IM Cascode结构的LNA电路的瞬态电流持续时间明显减少, 并且峰值减小了66%及以上.
    In this work, TCAD simulation modeling is carried out for silicon-germanium heterojunction bipolar transistor (SiGe HBT), and an X-band low noise amplifier (LNA) circuit is built based on the SiGe HBT device model to carry out the hybrid simulation of single-particle transient (SET). The rule of SET pulse varying with LET value and incident angle of ions is studied, and the results show that with the increase of incident LET value, the amplitude of SET pulse at the LNA port increases, and the oscillation time is prolonged; with the increase of incident angle of ions, the amplitude of SET pulse at the LNA port first increases and then decreases, and the oscillation time decreases. With the development of the characterization process, the cutoff frequency (fT) and the maximum oscillation frequency (fMAX) of SiGe HBT device with IM structure, are measured considering the use of inverse-mode (IM) common emitter and common-base structures (Cascode) to reduce the sensitivity of the LNAs to single-particle effects. This work calibrates the devices of the TCAD platform as well as the devices of the ADS platform, establishes F-F LNAs as well as I-F LNAs on the ADS, respectively, and verifies the relevant RF performances of the LNA circuits by using the IM-structured SiGe HBTs as the core devices. The SET experiments are performed on the Sentaurus TCAD platform for the F-F LNA circuit and I-F LNA circuit for ions incident on two positions: common base transistor and common emitter transistor, respectively. It is concluded that the LNA with IM structure still shows good RF performance compared with the standard LNA at 130 nm. The transient current duration of the LNA circuit with IM Cascode structure is significantly reduced, and the peak value is reduced by 66% or more, which significantly reduces the sensitivity of the SiGe LNA circuit to SET.
      通信作者: 张晋新, jxzhang@xidian.edu.cn
      Corresponding author: Zhang Jin-Xin, jxzhang@xidian.edu.cn
    [1]

    辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar

    Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar

    [2]

    Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar

    [3]

    马良 2019 中国新通信 21 222Google Scholar

    Man L 2019 Chin. New Telecommun. 21 222Google Scholar

    [4]

    谢孟贤, 古妮娜 2008 微电子学 38 34

    Xie M X, Gu N N 2008 Microelectronics 38 34

    [5]

    Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar

    [6]

    包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239

    Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239

    [7]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [8]

    Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology

    [9]

    Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar

    [10]

    Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar

    [11]

    Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar

    [12]

    Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar

    [13]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [14]

    Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar

    [15]

    Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar

    [16]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 物理学报 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [17]

    Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar

    [18]

    Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar

    [19]

    Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar

    [20]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [21]

    Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar

    [22]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [23]

    Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar

    [24]

    Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar

    [25]

    Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar

  • 图 1  二维器件模型示意图 (a) 二维器件模型图; (b) Ge组分随着纵轴坐标变化示意图

    Fig. 1.  Schematic of two-dimensional (2D) device model: (a) 2D Device model diagram; (b) schematic diagram of the variation of the Ge component with the coordinate of the vertical axis.

    图 2  低噪放大器电路图

    Fig. 2.  Low noise amplifier circuit diagram.

    图 3  离子入射轨迹仿真图

    Fig. 3.  Simulation of ion incidence trajectory.

    图 4  不同LET值的LNA输出端口瞬态电流对比图

    Fig. 4.  Comparison of transient currents at LNA output ports for different LET values.

    图 6  不同LET值的重离子入射CB晶体管时, CE的SET电流仿真图

    Fig. 6.  Simulation of SET current of CE when the heavy ions with different LET values incident on CB transistor.

    图 5  不同LET值的重离子入射CB晶体管时, CB的SET电流仿真图

    Fig. 5.  Simulation of the SET current of the CB when the heavy ions with different LET values incident on the CB transistor.

    图 7  离子入射角度示意图

    Fig. 7.  Schematic diagram of the angle of incidence of ions.

    图 8  不同入射角度的LNA输出端口瞬态电流对比图

    Fig. 8.  Comparison of transient currents at the output ports of LNAs with different incidence angles.

    图 10  不同角度的重离子入射CB晶体管时, CE的SET电流仿真图

    Fig. 10.  Simulation of the SET current of CE when heavy ions are incident on the CB transistor at different angles.

    图 9  不同角度的重离子入射CB晶体管时, CB的SET电流仿真图

    Fig. 9.  Simulation of the SET current of the CB when heavy ions are incident on the CB transistor at different angles.

    图 11  IM-SiGe fT与IC之间的关系

    Fig. 11.  Relationship between fT and IC of IM-SiGe.

    图 12  IM-SiGe fMAX与IC之间的关系

    Fig. 12.  Relationship between fMAX and IC of IM-SiGe.

    图 13  Cascode配置的F-F与I-F结构示意图

    Fig. 13.  Schematic diagram of F-F and I-F structures with Cascode configurations.

    图 14  SiGe HBT器件的S参数Smith图 (a) S11 (红色)/S22 (蓝色); (b) S12 (红色)/S21 (蓝色)

    Fig. 14.  Smith chart of S-parameters of SiGe HBT devices: (a) S11 (red)/S22 (blue); (b) S12 (red)/S21 (blue).

    图 15  ADS SiGe HBT器件的S参数Smith图 (a) S11 (红色)/S22 (蓝色); (b) S12 (红色)/S21 (蓝色)

    Fig. 15.  S-parameter Smith chart of ADS SiGe HBT device: (a) S11 (red)/S22 (blue); (b) S12 (red)/S21 (blue)

    图 16  SiGe HBT器件的S参数扫描图 (a) S11; (b) S22; (c) S21

    Fig. 16.  S-parameter scan of SiGe HBT device: (a) S11; (b) S22; (c) S21.

    图 17  SiGe HBT TCAD与ADS器件的S参数对比图(Vce = 1 V, Vbe = 0.5 V) (a) S11; (b) S22; (c) S12/S21

    Fig. 17.  S-parameter comparison of SiGe HBT TCAD and ADS devices biased at 0.5 V (Vce = 1 V, Vbe = 0.5 V): (a) S11; (b) S22; (c) S12/S21.

    图 18  传统模式下LNA的S参数图

    Fig. 18.  S-parameter plot of LNA in forward mode.

    图 19  中心频率为9.5 GHz的I-F结构以及F-F结构的LNA电路S参数图对比 (a) S11; (b) S12; (c) S21; (d) S22

    Fig. 19.  Comparison of S-parameter plots of LNA circuits with I-F structure and F-F structure at a center frequency of 9.5 GHZ: (a) S11; (b) S12; (c) S21; (d) S22.

    图 20  I-F结构以及F-F结构的LNA电路NF对比图

    Fig. 20.  NF comparison of LNA circuits with I-F structure as well as F-F structure.

    图 21  F-F LNA以及I-F LNA电路中对CB与CE的晶体管进行重离子入射示意图 (a) 重离子入射CB; (b) 重离子入射CE

    Fig. 21.  Schematic of heavy-ion incidence on the transistors of CB and CE in F-F LNA as well as I-F LNA circuits: (a) Heavy ion incident CB; (b) heavy ion incident CE.

    图 22  CB在离子入射条件下F-F和I-F共源共栅配置的SET模拟结果

    Fig. 22.  CB SET simulation results for F-F and I-F common source and common gate configurations under ion incidence conditions.

    图 23  CE在离子入射条件下F-F和I-F共源共栅配置的SET模拟结果

    Fig. 23.  CE SET simulation results for F-F and I-F common source and common gate configurations under ion incidence conditions.

    表 1  LNA核心参数

    Table 1.  LNA core parameters.

    LNA核心参数 I-F Cascode F-F Cascode
    f0/GHz 9.5 9.5
    S21/dB 20 23
    NF/dB 2.9 1.4
    P1dB/dBm –18 –22
    下载: 导出CSV
  • [1]

    辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar

    Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar

    [2]

    Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar

    [3]

    马良 2019 中国新通信 21 222Google Scholar

    Man L 2019 Chin. New Telecommun. 21 222Google Scholar

    [4]

    谢孟贤, 古妮娜 2008 微电子学 38 34

    Xie M X, Gu N N 2008 Microelectronics 38 34

    [5]

    Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar

    [6]

    包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239

    Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239

    [7]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [8]

    Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology

    [9]

    Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar

    [10]

    Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar

    [11]

    Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar

    [12]

    Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar

    [13]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [14]

    Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar

    [15]

    Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar

    [16]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 物理学报 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [17]

    Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar

    [18]

    Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar

    [19]

    Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar

    [20]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [21]

    Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar

    [22]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [23]

    Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar

    [24]

    Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar

    [25]

    Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar

  • [1] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [2] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应. 物理学报, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [3] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真. 物理学报, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究. 物理学报, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [6] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [7] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [8] 韩金华, 覃英参, 郭刚, 张艳文. 一种二进制降能器设计方法. 物理学报, 2020, 69(3): 033401. doi: 10.7498/aps.69.20191514
    [9] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [10] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [13] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [14] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究. 物理学报, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [15] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究. 物理学报, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [16] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [17] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响. 物理学报, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [18] 刘凡宇, 刘衡竹, 刘必慰, 梁斌, 陈建军. 90 nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响. 物理学报, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [19] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
计量
  • 文章访问数:  1573
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-04-19
  • 上网日期:  2024-04-28
  • 刊出日期:  2024-06-20

/

返回文章
返回