搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干反馈的相敏放大器强度差压缩增强研究

刘婷婷 杨晓华 韩亚帅 王军民

引用本文:
Citation:

基于相干反馈的相敏放大器强度差压缩增强研究

刘婷婷, 杨晓华, 韩亚帅, 王军民

Research on intensity–difference squeezing enhancement of phase-sensitive amplifier based on coherent feedback

Liu Ting-Ting, Yang Xiao-Hua, Han Ya-Shuai, Wang Jun-Min
PDF
HTML
导出引用
  • 基于原子四波混频的光参量放大器是实现强度差压缩态光场的最有效手段之一. 然而, 受限于原子蒸气对光场的吸收损耗, 其输出的压缩度仍有待提升. 光参量放大器输出的非经典光场部分反馈回输入端口, 可实现其输出光场量子特性的增强. 本文对相干反馈的相敏放大器开展理论分析, 研究了其输出光场的强度差压缩与反馈强度、强度增益和损耗的依赖关系. 研究结果表明, 在无损耗的理想情况下, 通过调控反馈强度和位相可实现无穷大的压缩输出. 在考虑实际的实验参数条件下, 此方案也可在一定的反馈强度范围内和特定的位相条件下, 实现显著的压缩增强. 本研究结果可为实验实现高质量非经典光场提供有益的参考.
    The intensity-difference squeezed state is an important concept in quantum optics, which is not only of great significance for fundamental research in quantum physics, but also an important quantum resource in the fields of quantum communication, quantum computing, and quantum precision measurement. The optical parametric amplifier based on atomic four-wave mixing is one of the most effective means to achieve intensity-difference squeezed light. However, due to the absorption loss of atomic vapor in the light field, the output squeezing still needs improving. By feeding the non-classical optical field from the optical parametric amplifier back to the input port, the quantum characteristics of its output optical field can be enhanced. However, the intensity-difference squeezing enhancement from a phase-insensitive amplifier is experimentally realized based on coherent feedback control. The intensity-difference squeezing enhancement of the phase-sensitive amplifier has not been discussed. In this work, a two-port coherent feedback-controlled phase-sensitive amplifier is analyzed theoretically. The dependence of the intensity-difference squeezing, respectively, on the feedback intensity, the intensity gain of the optical parametric amplifier, and the losses of the system are investigated. For the ideal case in which the losses of the system are ignored, infinite squeezing can be achieved by adjusting the strength and phase of feedback. Considering the actual atomic absorption losses, squeezing enhancement can also be achieved over a wide range of intensity gains within a certain feedback intensity range. In addition, the squeezing enhancement is quite efficient for the medium intensity gain range. The intensity-difference squeezing enhancement strongly depends on the absorption loss of atomic vapor. The smaller the absorption loss, the more significant the squeezing enhancement effect is. Furthermore, the experimental feasibility of this scheme is also considered in detail. Our research can provide useful references for achieving high-quality non classical light fields in experiment, which may find applications in quantum information processing and quantum precise measurement.
      通信作者: 韩亚帅, hanyashuai@ahnu.edu.cn ; 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104013, 11974226)资助的课题.
      Corresponding author: Han Ya-Shuai, hanyashuai@ahnu.edu.cn ; Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104013, 11974226).
    [1]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [2]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [3]

    Marino M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar

    [4]

    Wu S H, Bao G Z, Guo J X, Chen J, Du W, Shi M W, Yang P Y, Chen L Q, Zhang W P 2023 Sci. Adv. 9 1760Google Scholar

    [5]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [6]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [7]

    韩亚帅, 张啸, 张昭, 屈军, 王军民 2022 物理学报 71 074202Google Scholar

    Han Y S, Zhang X, Zhang Z, Qu J, Wang J M 2022 Acta Phys. Sin. 71 074202Google Scholar

    [8]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [9]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [10]

    Xin J, Qi J, Jing J T 2017 Opt. Lett. 42 366Google Scholar

    [11]

    Lou Y B, Chen Y X, Wang J B, Liu S S, Jing J T 2023 Sci. China Phys. Mech. 66 250311Google Scholar

    [12]

    Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar

    [13]

    Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. Autom. Control 57 2045Google Scholar

    [14]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305Google Scholar

    [15]

    Pan X C, Chen H, Wei T X, Zhang J, Marino A M, Treps N, Glasser R T, Jing J T 2018 Phys. Rev. B 97 161115Google Scholar

    [16]

    Zhong Y Y, Jing J T 2020 Phys. Rev. A 101 023813Google Scholar

    [17]

    Fang Y M, Jing J T 2015 New J. Phys. 17 023027Google Scholar

    [18]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

  • 图 1  (a)基于85Rb原子D1谱线的双-Λ能级结构; (b)相干反馈的相敏放大器理论模型

    Fig. 1.  (a) Double-Λ energy level diagram of 85Rb D1 transition line; (b) schematic of the coherent feedback-controlled phase-sensitive amplifier.

    图 2  理想情况下强度差压缩随分束器反射率k的变化曲线. IDS为强度差压缩; PSA为相敏放大器; CFC-PSA为相干反馈控制的相位灵敏放大器

    Fig. 2.  Curve of intensity-difference squeezing versus reflectivity k of the beam splitter under the ideal condition. IDS represents intensity-difference squeezing; PSA represents phase-sensitive amplifier; CFC-PSA represents coherent feedback-controlled phase-sensitive amplifier.

    图 3  实际实验参数情况下强度差压缩随分束器反射率k的变化曲线

    Fig. 3.  Curve of intensity-difference squeezing versus reflectivity k of the beam splitter under the practical experimental parameters.

    图 4  实际实验参数情况下强度差压缩随强度增益G的变化曲线

    Fig. 4.  Curve of intensity-difference squeezing versus intensity gain G under the practical experimental parameters.

    图 5  实际实验参数情况下强度差压缩随铷池内部传输效率η1的变化曲线

    Fig. 5.  Curve of intensity-difference squeezing versus the internal transmission efficiency of rubidium cells under the practical experimental parameters.

    图 6  相干反馈的相敏放大器实验系统设计

    Fig. 6.  Experimental system design on coherent feedback controlled PSA.

  • [1]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [2]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [3]

    Marino M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar

    [4]

    Wu S H, Bao G Z, Guo J X, Chen J, Du W, Shi M W, Yang P Y, Chen L Q, Zhang W P 2023 Sci. Adv. 9 1760Google Scholar

    [5]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [6]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [7]

    韩亚帅, 张啸, 张昭, 屈军, 王军民 2022 物理学报 71 074202Google Scholar

    Han Y S, Zhang X, Zhang Z, Qu J, Wang J M 2022 Acta Phys. Sin. 71 074202Google Scholar

    [8]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [9]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [10]

    Xin J, Qi J, Jing J T 2017 Opt. Lett. 42 366Google Scholar

    [11]

    Lou Y B, Chen Y X, Wang J B, Liu S S, Jing J T 2023 Sci. China Phys. Mech. 66 250311Google Scholar

    [12]

    Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar

    [13]

    Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. Autom. Control 57 2045Google Scholar

    [14]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305Google Scholar

    [15]

    Pan X C, Chen H, Wei T X, Zhang J, Marino A M, Treps N, Glasser R T, Jing J T 2018 Phys. Rev. B 97 161115Google Scholar

    [16]

    Zhong Y Y, Jing J T 2020 Phys. Rev. A 101 023813Google Scholar

    [17]

    Fang Y M, Jing J T 2015 New J. Phys. 17 023027Google Scholar

    [18]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

  • [1] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [3] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [4] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] 左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才. 基于参量放大器的铯原子D2线明亮偏振压缩光源的产生. 物理学报, 2020, 69(1): 014207. doi: 10.7498/aps.69.20191009
    [6] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [7] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [8] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收. 音频段1.34 μm压缩态光场的实验制备. 物理学报, 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [9] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [10] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [11] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [12] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [13] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [14] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [15] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [16] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [17] 张俊香, 贺凌翔, 张天才, 谢常德, 彭昆墀. 压缩态光场的四阶量子干涉. 物理学报, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [18] 何林生, 江海河. 组合光场增强压缩真空场中原子冷却作用. 物理学报, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [19] 刘甲壬, 赵波, 王育竹. 负反馈提高高阻恒流源驱动的LED的输出光场噪声压缩量. 物理学报, 1994, 43(10): 1598-1604. doi: 10.7498/aps.43.1598
    [20] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
计量
  • 文章访问数:  1651
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-04-22
  • 上网日期:  2024-05-22
  • 刊出日期:  2024-07-05

/

返回文章
返回