搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CrCl3隧穿磁阻的界面效应与多场效应调控

樊译颉 张阮 陈宇 蔡星汉

引用本文:
Citation:

CrCl3隧穿磁阻的界面效应与多场效应调控

樊译颉, 张阮, 陈宇, 蔡星汉

Tuning magnetoresistance of chromium chloride tunnel junction through the interface and multi-field effect

Fan Yi-Jie, Zhang Ruan, Chen Yu, Cai Xing-Han
PDF
HTML
导出引用
  • 磁隧道结是研究磁性材料自旋结构、输运特性、磁相变和磁各向异性的重要实验平台. 本研究基于干法转移技术制备了以机械剥离的少层范德瓦耳斯反铁磁绝缘体三氯化铬(CrCl3)为势垒层、少层石墨烯为电极的磁隧道结原型器件结构, 并进行了低温电磁输运测量, 除观测到自旋过滤效应引起的隧穿磁阻外, 还发现多种由非传统效应引起的磁阻变化. 基于对隧道结自旋结构和能带结构的分析, 本文将之归因于由磁近邻效应引起的隧穿机制改变, 以及石墨烯电极态密度在高磁场下出现的量子振荡行为. 本文报道了在二维磁隧道结中与隧穿磁阻相关且此前未被广泛关注的物理现象, 加深了对此类二维异质结构中载流子输运特性的理解, 为二维磁性材料的物理性质研究及其自旋电子学应用拓展了新的途径.
    Magnetic tunnel junctions (MTJs) serve as essential platforms for investigating spin transport properties, magnetic phase transitions, and anisotropy in magnetic materials. Recently two-dimensional van der Waals antiferromagnetic insulators like chromium chloride (CrCl3) or chromium iodide (CrI3) have been used to develop spin-filtering magnetic tunnel junctions (sf-MTJs), improving the device performance for material property exploration and spintronic applications. However, it is crucial to recognize that the spin-filtering effect is not the sole determining factor of tunneling magnetoresistance (TMR) in these junctions; the interface magnetic exchange interactions and adjustable electrode density of states (DOS) fluctuations, response to applied electric or magnetic fields, can also influence the tunneling current.In this study, we fabricate MTJ devices by using mechanically-exfoliated few-layer CrCl3 as the tunnel barrier and few-layer graphene (FLG) as electrodes through dry transfer technique. Conducting low-temperature quantum transport measurements, we observe unconventional TMR behaviors, including bias-voltage-dependent TMR, oscillatory tunneling current under high magnetic fields, and tunable tunneling current via gate voltage.A qualitative model of elastic tunneling current is employed to analyze the spin and band characteristics of the MTJ device. The observed bias-voltage-dependent TMR is attributed to the changes in the tunneling mechanism due to magnetic proximity effect, which induces magnetization in the FLG electrode near the FLG/CrCl3 interface. The antiparallel alignment of polarized spin to CrCl3’s magnetization results in injected charge carriers facing a higher tunnel barrier, leading to negative TMR at lower bias voltages. As the bias voltage increases, the magnetic proximity effect lessens, and the device reverts to its conventional spin-filtering functionality. The oscillatory tunneling current is explained by the graphene electrode’s quantum oscillatory density of states behavior under vertical magnetic fields, which can be controlled by the applied gate voltage.This study contributes to the understanding of previously unexplored TMR phenomena in two-dimensional MTJs, deepening our insights into carrier transport properties in these heterostructures and broadening avenues for investigating the physical properties of two-dimensional magnetic materials and their spintronic applications.
      通信作者: 蔡星汉, xhcai@sjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309200)、上海交通大学基础研究特区计划(批准号: 21TQ1400206)和国家自然科学基金(批准号: 92064013, 11904226)资助的课题.
      Corresponding author: Cai Xing-Han, xhcai@sjtu.edu.cn
    • Funds: Project supported by the National Key Research & Development Program (Grant No. 2020YFA0309200), the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (Grant No. 21TQ1400206), and the National Natural Science Foundation of China (Grant Nos. 92064013, 11904226).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Worledge D C, Geballe T H 2000 J. Appl. Phys. 88 5277Google Scholar

    [4]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [5]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [6]

    Zeng X, Ye G, Huang S, Ye Q, Li W, Chen C, Kuang H, Li M, Liu Y, Pan Z, Hasan T, Luo J, Lu X, Wang X 2022 Nano Today 42 101373Google Scholar

    [7]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [8]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [9]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [10]

    Zhang Y B, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [11]

    Li G H, Andrei E Y 2007 Nat. Phys. 3 623Google Scholar

    [12]

    McGuire M A, Clark G, KC S, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [13]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q, Liang Q, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [14]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [15]

    Jiang D, Yuan T Z, Wu Y Z, Wei X Y, Mu G, An Z H, Li W 2020 ACS Appl. Mater. Interfaces 12 49252Google Scholar

    [16]

    Liu Y, Petrovic C 2020 Phys. Rev. B 102 014424Google Scholar

    [17]

    Sun W, Wang W X, Zang J D, Li H, Zhang G B, Wang J L, Cheng Z X 2021 Adv. Funct. Mater. 31 2104452Google Scholar

    [18]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [19]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [20]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [21]

    Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R, Jarillo-Herrero P 2019 Nat. Phys. 15 1255Google Scholar

    [22]

    Liehr M, Hazra J, Beckmann K, Mukundan V, Alexandrou I, Yeow T, Race J, Tapily K, Consiglio S, Kurinec S K, Diebold A C, Cady N 2023 J. Vac. Sci. Technol. B 41 012805Google Scholar

    [23]

    Wang J, Ahmadi Z, Lujan D, Choe J, Taniguchi T, Watanabe K, Li X, Shield J E, Hong X 2023 Adv. Sci. 10 2203548Google Scholar

    [24]

    Ghiasi T S, Kaverzin A A, Dismukes A H, de Wal D K, Roy X, van Wees B J 2021 Nat. Nanotechnol. 16 788Google Scholar

    [25]

    Jeong J, Kiem D H, Guo D, Duan R, Watanabe K, Taniguchi T, Liu Z, Han M J, Zheng S, Yang H 2024 Adv. Mater. 36 2310291Google Scholar

    [26]

    Wu Y F, Cui Q R, Zhu M Y, Liu X J, Wang Y, Zhang J Y, Zheng X Q, Shen J X, Cui P, Yang H X, Wang S G 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [27]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947Google Scholar

    [28]

    Xie B H, Ji Z J, Wu J X, Zhang R, Jin Y M, Watanabe K, Taniguchi T, Liu Z, Cai X H 2023 ACS Nano 17 18352Google Scholar

    [29]

    McClure J W 1957 Phys. Rev. 108 612Google Scholar

  • 图 1  器件的电输运表征测试 (a)器件结构示意图; (b)器件光学显微照片, 其中石墨电极和CrCl3的位置使用虚线框示意标出; (c)隧穿电流随温度的变化, 插图是对2—50 K区域的放大; (d)低温伏安特性曲线, 插图是对–0.6—0.6 V区域的放大; (e)根据图(d)计算的隧穿磁阻曲线; (f)根据图(d)计算的F-N图, 插图为两种隧穿机制下的能带图

    Fig. 1.  Transport characterizations of the device: (a) Schematic of the device, with the positions of the graphite electrodes and CrCl3 indicated by dashed boxes; (b) optical micrograph of the device; (c) tunneling current as a function of the temperature. Inset: zoom-in plot of the range between 2–50 K; (d) low-temperature I-V characteristic, inset: zoom-in plot of the range between –0.6–0.6 V; (e) TMR as a function of the bias voltage derived from (d); (f) F-N plot derived from panel (d), insets are band diagram under two tunneling regimes.

    图 2  对器件TMR特性的实验和理论解释 (a)不同偏置电压下的归一化隧穿电流曲线; (b)石墨电极态密度的自旋劈裂示意图, 着色区域表示电子布居数. (c)—(f)磁隧道结自旋结构示意图, 分别对应(c)低偏压、低磁场, (d)低偏压、高磁场, (e)高偏压、低磁场, (f)高偏压、高磁场. (g)隧穿电流随磁场方向与样品法向夹角的变化

    Fig. 2.  Experimental and theoretical explanation of TMR characteristics of the device: (a) Normalized tunneling current as a function of the out-of-plane magnetic field under different dc bias voltages; (b) schematic of spin splitting of graphite’s DOS, with the shaded area representing population of electrons. (c)–(f) Schematics of spin configuration of the MTJ, with each plot corresponding to the regime of (c) low bias, low magnetic field, (d) low bias, high magnetic field, (e) high bias, low magnetic field and (f) high bias, high magnetic field, respectively. (g) Tunneling current as a function of the angle between the magnetic field and the normal direction of the sample.

    图 3  隧穿电流的量子振荡 (a)隧穿电流随竖直方向磁场的变化关系曲线, 测试在T = 2 K下进行; (b)少层石墨烯能带的STB模型; (c)少层石墨烯态密度发生部分量子化的示意图. (d)—(f) MTJ器件的能带图(EFBEFT分别代表底电极和顶电极的费米能级) (d)热平衡情况; (e)施加一定负栅极电压的情况; (f)同时施加负栅极电压和正向偏置电压的情况

    Fig. 3.  Quantum oscillation of the tunneling current: (a) Tunneling current as a function of the out-of-plane magnetic field, at the temperature of T = 2 K; (b) STB model showing the band structure of few-layer graphene; (c) schematic of partial quantization of DOS in few-layer graphene. (d)–(f) Band structures of MTJ device (EFB and EFT represents the Fermi level of bottom and top graphite electrode, respectively): (d) in thermal equilibrium; (e) with an applied negative gate voltage; (f) with both an applied negative gate voltage and a positive bias voltage, respectively.

    图 4  隧穿电流的栅极电压依赖性 (a)不同栅极电压下隧穿电流随磁场的变化关系; (b)不同磁场下器件的转移特性, 所有测试在T = 2 K下进行

    Fig. 4.  Gate dependence of the tunneling current: (a) Tunneling current as a function of the out-of-plane magnetic field with different applied gate voltages; (b) transfer characteristics of the device at selected out-of-plane magnetic fields, all measurements are carried out at the temperature T = 2 K.

  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Worledge D C, Geballe T H 2000 J. Appl. Phys. 88 5277Google Scholar

    [4]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [5]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [6]

    Zeng X, Ye G, Huang S, Ye Q, Li W, Chen C, Kuang H, Li M, Liu Y, Pan Z, Hasan T, Luo J, Lu X, Wang X 2022 Nano Today 42 101373Google Scholar

    [7]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [8]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [9]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [10]

    Zhang Y B, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803Google Scholar

    [11]

    Li G H, Andrei E Y 2007 Nat. Phys. 3 623Google Scholar

    [12]

    McGuire M A, Clark G, KC S, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [13]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q, Liang Q, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [14]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [15]

    Jiang D, Yuan T Z, Wu Y Z, Wei X Y, Mu G, An Z H, Li W 2020 ACS Appl. Mater. Interfaces 12 49252Google Scholar

    [16]

    Liu Y, Petrovic C 2020 Phys. Rev. B 102 014424Google Scholar

    [17]

    Sun W, Wang W X, Zang J D, Li H, Zhang G B, Wang J L, Cheng Z X 2021 Adv. Funct. Mater. 31 2104452Google Scholar

    [18]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [19]

    Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F 2019 Nat. Nanotechnol. 14 1116Google Scholar

    [20]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [21]

    Klein D R, MacNeill D, Song Q, Larson D T, Fang S, Xu M, Ribeiro R A, Canfield P C, Kaxiras E, Comin R, Jarillo-Herrero P 2019 Nat. Phys. 15 1255Google Scholar

    [22]

    Liehr M, Hazra J, Beckmann K, Mukundan V, Alexandrou I, Yeow T, Race J, Tapily K, Consiglio S, Kurinec S K, Diebold A C, Cady N 2023 J. Vac. Sci. Technol. B 41 012805Google Scholar

    [23]

    Wang J, Ahmadi Z, Lujan D, Choe J, Taniguchi T, Watanabe K, Li X, Shield J E, Hong X 2023 Adv. Sci. 10 2203548Google Scholar

    [24]

    Ghiasi T S, Kaverzin A A, Dismukes A H, de Wal D K, Roy X, van Wees B J 2021 Nat. Nanotechnol. 16 788Google Scholar

    [25]

    Jeong J, Kiem D H, Guo D, Duan R, Watanabe K, Taniguchi T, Liu Z, Han M J, Zheng S, Yang H 2024 Adv. Mater. 36 2310291Google Scholar

    [26]

    Wu Y F, Cui Q R, Zhu M Y, Liu X J, Wang Y, Zhang J Y, Zheng X Q, Shen J X, Cui P, Yang H X, Wang S G 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [27]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947Google Scholar

    [28]

    Xie B H, Ji Z J, Wu J X, Zhang R, Jin Y M, Watanabe K, Taniguchi T, Liu Z, Cai X H 2023 ACS Nano 17 18352Google Scholar

    [29]

    McClure J W 1957 Phys. Rev. 108 612Google Scholar

  • [1] 董石泉, 何安, 刘伟, 薛存. 磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究. 物理学报, 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [2] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展. 物理学报, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥. 基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较. 物理学报, 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [4] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] 金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟. 基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用. 物理学报, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [7] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [8] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究. 物理学报, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [9] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [10] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [11] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [12] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [13] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究. 物理学报, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [14] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻. 物理学报, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [15] 王 勇, 张 泽, 曾中明, 韩秀峰. 电子全息对磁隧道结势垒层的研究. 物理学报, 2006, 55(3): 1148-1152. doi: 10.7498/aps.55.1148
    [16] 于敦波, 丰家峰, 杜永胜, 韩秀峰, 严 辉, 应启明, 张国成. 成分调制的La1-xSrxMnO3复合隧道结. 物理学报, 2005, 54(10): 4903-4908. doi: 10.7498/aps.54.4903
    [17] 王茂祥, 孙承休, 史晓春, 俞建华. 双势垒结构Cu-Al2O3-MgF2-Au隧道结中的电子共振隧穿与发光特性研究. 物理学报, 1999, 48(2): 326-331. doi: 10.7498/aps.48.326
    [18] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象. 物理学报, 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [19] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅱ). 物理学报, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [20] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅰ). 物理学报, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
计量
  • 文章访问数:  479
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-07
  • 上网日期:  2024-05-21
  • 刊出日期:  2024-07-05

/

返回文章
返回