搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡等离子体流场CARS光谱计算及振转温度测量

杨文斌 张华磊 齐新华 车庆丰 周江宁 白冰 陈爽 母金河

引用本文:
Citation:

非平衡等离子体流场CARS光谱计算及振转温度测量

杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河

CARS Spectra Calculation and Vibrational-Rotational Temperature Measurement for Non-Equilibrium Plasma

Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He
PDF
导出引用
  • 高温非平衡问题是高超声速流动中最基本的科学问题之一,而热力学非平衡特性的准确表征是理解高温非平衡问题和高超声速空气动力学的基础,如何准确可靠地表征流场的热力学非平衡特性是解决高超声速飞行器在稀薄流域高温非平衡问题的关键。本文基于相干反斯托克斯拉曼散射(CARS)基本原理,开发了面向非平衡流场的振转温度反演算法,并在宽温度范围静态环境开展验证。搭建了非平衡等离子体流场CARS测温实验平台并开展实验验证,结果表明微波等离子体处于热力学非平衡状态,并且振动温度和转动温度与微波功率成正比,而热力学非平衡度与微波功率成反比,当微波功率从80W增加至180W时,等离子体电子数密度增加,中性粒子通过与电子碰撞获得能量使振动温度从2201±43K增加至2452±56K、转动温度从382±20K增加至535±49K;而处于振动激发态的分子通过V-T弛豫过程(对于N2分子弛豫速率与温度成正比)将部分振动能转化为平动能,导致振动温度与转动温度的差异降低,等离子体热力学非平衡度从0.83降低至0.78。
    How to characterize thermodynamic non-equilibrium characteristics of flow field accurately and reliably is the key to solve the thermal and chemical non-equilibrium problem, which is one of the most basic scientific problems in hypersonic aerodynamcis. Based on the principles of Coherent Anti-Stokes Raman Scattering (CARS) and Modified Exponential Gap (MEG) Raman linewidth model, a CARS spectral computation and vib-rotational temperature inversion program is proposed for characterizing the thermodynamic non-equilibrium properties of high-temperature gas flow field. The influence of vibrational and rotational temperatures on Raman linewidth and CARS spectral characteristics is studied theoretically. A CARS system is built and the corresponding accuracy over a wide temperature range is verified in a static environment that is established using a high-temperature tube furnace and a McKenna burner. The result show that the average relative deviation of the vibration temperature Tv and rotational temperature Tr from the equilibrium temperature Teq are 4.28% and 3.34% respectively in the range of 1000K to 2300K, and the corresponding average repeatability are 1.95% and 3.03% respectively. These results indicate that the vibrational and rotational temperatures obtained by the non-equilibrium program are in good agreement with those obtained by the thermal equilibrium program. Finally, a non-equilibrium microwave plasma flow is built and its vibrational and rotational temperatures are measured using the developed program. The result show that the microwave plasma is in thermodynamic non-equilibrium, and the vibrational temperature and rotational temperature are proportional to microwave power, while the thermodynamic non-equilibrium degree exhibits the opposite trend. With microwave power increasing from 80W to 180W, the vibrational temperature of plasma increases from 2201 ±43 K to 2452 ±56 K, the rotational temperature increases from 382 ±20 K to 535 ±49 K. The principal reasons are that, the increase in microwave power leads to an increase in electron number density, and neutral particles obtain energy through collision with electrons, resulting in an increase in vibrational temperature, rotational temperature, and translational temperature. The thermodynamic non-equilibrium degree decreases from 0.83 to 0.78 with the microwave power increasing is due to the V-T relaxation rate increasing. The molecules in the vibrational excited states lose energy through collision with ground state molecules (i.e. V-T relaxation process), resulting in vibrational energy being converted into translational energy. For N2 molecules, the V-T relaxation rate is directly proportional to the temperature, which leads to a decrease in the difference between vibrational and rotational temperatures with increasing microwave power, leading to a decrease in non-equilibrium degree with increasing microwave power.
  • [1]

    Jiang Z L, Li J P, Hu Z M, Liu Y F, Yu H R 2018 Chinese Journal of Theoretical and Applied Mechanics 50(6) 1283 (in Chinese) [姜宗林, 李进平, 胡宗民,刘云峰, 俞鸿儒 2018 力学学报 50(6) 1283]

    [2]

    Knisely C P, Zhong X L AIAA Journal 2020 58(4) 1

    [3]

    Chen X L, Wang L, Fu S 2021 Physics of Fluids 33 034132

    [4]

    Yang X F, Gui Y W, Xiao G M, Du Y X, Liu L, Wei D 2020 International Journal of Heat and Mass Transfer 146 118869

    [5]

    Chen X H, Chen F, Zhang S T, Liu H 2016 54th AIAA Aerospace Sciences Meeting San Diego, USA, January4-8, 2016, p1252

    [6]

    Li W J, Huang J, Zhang Z W, Wang L Y, Huang H M, Liang J 2021 Acta Astronautica 183 101.

    [7]

    Park C 2013 International Journal of Aeronautical and Space Science 14(1) 1

    [8]

    Holden M S, Wadhams T P, MacLean M, Dufrene M, Mundy E 2012 50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition Nashville, Tennessee, January 9-12, 2012 p469

    [9]

    Park C 2009 Journal of Thermophysics and Heat Transfer 23(3) 417

    [10]

    Matsuyama S, Ohnishi N, Sasoh A, Sawada K 2005 Journal of Thermophysics and Heat Transfer 19(1) 28

    [11]

    Niu Q L, He Z H, Dong S K 2016 Chinese Journal of Aeronautics 29(5) 1367

    [12]

    Furudate M, Nonaka S, Sawada K 1999 Journal of Thermophysics and Heat Transfer 13(4) 424

    [13]

    Winter M W, Srinivasan C, Charnigo R 2015 46th AIAA Plasma dynamics and Lasers Conference Dallas, USA, June 22-26, 2015 p2963

    [14]

    Lyu J M, Li F, Lin X, Cheng X L, Yu X L, Yu J J 2019 Journal of Experiments in Fluid Mechanics 33(3) 25 (in Chinese) [吕俊明, 李飞, 林鑫,程晓丽,余西龙,俞继军 2019 实验流体力学 33(3) 25]

    [15]

    Zeng H, Yu X L, Li F, Zhang S H 2015 Journal of Experiments in Fluid Mechanics 29(2): 79 (in Chinese) [曾徽, 余西龙, 李飞, 张少华 2015 实验流体力学 29(2): 79]

    [16]

    Sharma S P, Ruffin S M, Gillcspic W D, Meyer S A 1992 27th Thermophysics Conference Nashville, USA, July 6-8, 1992 p2855

    [17]

    Takayanagi H, Mizuno M, Fujii K, Suzuki T, Fujita K 2009 41st AIAA Thermophysics Conference San Antonio, USA, June 22, 2009 p4241

    [18]

    Grisch F, Bouchardy P, Péalat M 1993 23rd Fluid Dynamics, Plasmadynamics and Lasers Conference Orlando, USA, July 6, 1993 p3047

    [19]

    Grisch F, Bouchardy P, Joly V, Marmignon C, Koch U, Gulhan A 2000 AIAA Journal 38(9) 1669

    [20]

    Kim M, Koch U, Esser B, Koch U 2011 42nd AIAA Thermophysics Conference Honolulu, USA, June 27, 2011 p3777

    [21]

    Gülhan A, Esser B, Koch U, Fischer M, Magens E, Hannemann V 2018 AIAA Journal 56(3) 1072

    [22]

    Dogariu A, Dogariu L, Smith M S, Lafferty J, Miles R B 2019 AIAA SciTech Forum San Diego, USA, January 7-11, 2019 p1089

    [23]

    Dogariu A, Dogariu L, Smith M S, McManamen B, Lafferty J F, Miles R B 2021 AIAA SciTech Forum January 11-15&19-21, Virtual Event, 2021 p0020

    [24]

    Montello A, Nishihara M, Rich JW, Adamovich I V, Lempert W R2012 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Nashville, USA, January 9-12, 2012 p0239

    [25]

    Tian Z Y, Zhao H J, Wei H Y, Li Y 2021 Acta Phys. Sin. 70(21) 214203 (in Chinese) [田子阳, 赵会杰, 尉昊赟, 李岩 2021 物理学报 70(21) 214203]

    [26]

    Yang W B, Qi X H, Ye J W, Li M, Zhou J N, Chen S, Mu J H 2020 Proc. of SPIE, Global Intelligent Industry Conference Guangzhou, China, October 22-24, p11780L

    [27]

    Huang A, Xu Z Y, Deng H, Yang W B, Qi X H, Li J, Kan R F 2023 Microw. Opt. Technol. Lett. 66(1) 1

    [28]

    Hu Z Y, Liu J R, Ye J F, Zhang Z R, Tao B, Zhang L R 2012 2nd International Symposium on Laser Interaction with Matter Xi’an China, May 16, 2013 87961G

    [29]

    Zhang H 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [张虎 2009 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [30]

    Dedic C E Ph. D. Dissertation (Ames: Iowa State University) 2017

    [31]

    Rahn L and Palmer R 1986 J. Opt. Soc. Am. B 3(9) 1164

    [32]

    Weigand P, Rainer L, Meier W 2003 http//www.dlr.de/VT/Datenarchiv

    [33]

    Xiao W, Zeng X Y, Zhu H C, Huang K M 2018 Vecuum Electronics 1, 48

    [34]

    Capitelli M, Ferreira C M, Gordiets, Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Springer Press) pp106-107

  • [1] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, doi: 10.7498/aps.70.20201773
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, doi: 10.7498/aps.70.20211144
    [3] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, doi: 10.7498/aps.67.20171828
    [4] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制. 物理学报, doi: 10.7498/aps.66.114206
    [5] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, doi: 10.7498/aps.66.104204
    [6] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, doi: 10.7498/aps.65.064204
    [7] 林子扬, 万辉, 尹君, 侯国辉, 牛憨笨. 分子环境变化对振动退相时间影响的实验研究. 物理学报, doi: 10.7498/aps.64.143301
    [8] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, doi: 10.7498/aps.64.223301
    [9] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析. 物理学报, doi: 10.7498/aps.63.233301
    [10] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, doi: 10.7498/aps.63.214601
    [11] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, doi: 10.7498/aps.63.073301
    [12] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, doi: 10.7498/aps.62.164202
    [13] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算. 物理学报, doi: 10.7498/aps.61.195203
    [14] 郭卿超, 张家良, 刘莉莹, 王德真. 大气压Ar射频容性放电模式转变的温度表征. 物理学报, doi: 10.7498/aps.60.025207
    [15] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术. 物理学报, doi: 10.7498/aps.60.053302
    [16] 彭志敏, 丁艳军, 翟晓东. 基于火焰发射光谱的转动温度和振动温度的测量. 物理学报, doi: 10.7498/aps.60.104702
    [17] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, doi: 10.7498/aps.59.5406
    [18] 哈静, 何寿杰, 段平光, 李霞, 韩育宏, 王龙. 有机溶液中圆锥泡声致发光. 物理学报, doi: 10.7498/aps.58.602
    [19] 董丽芳, 杨丽, 李永辉, 张彦召, 岳晗. 空气介质阻挡放电单个微放电通道发光强度及振动激发温度的空间分布. 物理学报, doi: 10.7498/aps.58.8461
    [20] 沈惠川. 分析热力学的应用:平衡态热力学中温度的相对论变换. 物理学报, doi: 10.7498/aps.54.2482
计量
  • 文章访问数:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-28

/

返回文章
返回