-
声表面波是激发和控制自旋波的一种新兴手段, 不仅激励效率高, 而且传输长度可以达到毫米量级, 通过引入磁声耦合还可以打破时空反演对称性, 实现声表面波的非互易传播. 本文对不同类型的磁声耦合的物理机制进行了梳理, 对比了磁弹性耦合、自旋-涡度耦合(包括非磁性层注入交变自旋流和磁性材料自身的Barnett效应), 以及磁-旋转耦合在不同模式的声表面波激发下的等效驱动磁场, 讨论了这些等效驱动场的角度依赖性, 以及相应功率吸收的频率依赖性. 这为在实际应用中区分和利用各种磁声耦合机制提供了理论支持. 此外, 本文还介绍了利用磁声耦合实现声表面波非互易性传输的两种主流手段, 包括利用手性失配效应和引入具有非互易性自旋波色散关系的磁结构, 对比并讨论了它们各自的物理机制和优劣势, 希望为设计和发展基于磁声耦合的固态声学隔离器、环形器提供参考.Surface acoustic wave (SAW) is a new means of exciting and controlling spin wave (SW), which has not only high excitation efficiency, but also long transmission length up to millimeter order. Based on the SAW-SW coupling (phonon-magnon coupling), a wide variety of new devices and applications such as high-sensitivity weak magnetic field sensors, energy-efficient spintronic devices, solid-state acoustic isolators, and nonreciprocal phase shifters, have been realized. Therefore, it is of great value to study the physical mechanism of magneto-acoustic coupling, develop new magneto-acoustic coupling effects, and improve the efficiency of magneto-acoustic coupling. In this work, different types of physical mechanisms of magneto-acoustic coupling are reviewed. The effective driven magnetic fields of magnetoelastic coupling, spin-vorticity coupling (including injection of alternating spin current from a non-magnetic layer and Barnett effect inside magnetic material itself), and magneto-rotation coupling under different modes of SAW excitation are compared. The angular dependence of these driven fields and the frequency dependence of the corresponding power absorption are discussed, which provides theoretical support for distinguishing and utilizing various magneto-acoustic coupling in practical applications. In addition, we also introduce two methods to realize nonreciprocal SAW transmission by magneto-acoustic coupling, including the helicity mismatch effect and nonreciprocal spin-wave dispersion magnetic structures, and discuss their physical mechanisms as well as advantages and disadvantages. For such magneto-acoustic nonreciprocal devices, the properties of higher isolation, lower insertion loss and wider bandwidth are always desired. In order to improve the properties of the devices, it is important to find magnetic structures with stronger SW nonreciprocity, reduce the insertion loss introduced by magnetic structure, and fully consider the effective driven field characteristics of different modes of SAW. We hope that this review can serve as a guide for future design and development of solid acoustic isolators and circulators in the RF and microwave frequency bands.
-
Keywords:
- magneto-acoustic coupling /
- spin waves /
- surface acoustic waves /
- phonon-magnon coupling /
- nonreciprocal device
[1] Takahashi S, Maekawa S 2008 J. Phys. Soc. Jpn. 77 031009Google Scholar
[2] Stancil D D, Prabhakar A 2009 Quantum theory of spin waves (New York: Springer Press
[3] Uchida K I, Saitoh E 2016 Spin current (New York: John Wiley & Sons Press
[4] Uchida K I, Adachi H, Kajiwara Y, Maekawa S, Saitoh E 2013 Solid State Phys. 64 1Google Scholar
[5] Adachi H, Uchida K I, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501Google Scholar
[6] Kruglyak V V, Demokritov S O, Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001Google Scholar
[7] Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar
[8] Reed K W, Owens J M, Carter R L 1985 Circuits Syst. Signal Press. 4 157Google Scholar
[9] Kim S K, Lee K S, Han D S 2009 Appl. Phys. Lett. 95 082507Google Scholar
[10] Wang Q, Zhong Z Y, Jin L C, Tang X L, Bai F M, Zhang H W, Beach G S D 2013 J. Magn. Magn. Mater. 340 23Google Scholar
[11] Chumak A V, Vasyuchka V I, Serga A A, Kostylev M P, Tiberkevich V S, Hillebrands B 2012 Phys. Rev. Lett. 108 257207Google Scholar
[12] Nakane R, Tanaka G, Hirose A 2018 IEEE Access 6 4462Google Scholar
[13] Sluka V, Schneider T, Gallardo R A, Kákay A, Weigand M, Warnatz T, Mattheis R, Roldán-Molina A, Landeros P, Tiberkevich V, Slavin A, Schütz G, Erbe A, Deac A, Lindner J, Raabe J, Fassbender J, Wintz S 2019 Nat. Nanotechnol. 14 328Google Scholar
[14] Jamali M, Kwon J, Seo S, Lee K J, Yang H 2013 Sci. Rep. 3 3160Google Scholar
[15] Chumak A, Serga A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar
[16] Nikitin A A, Ustinov A B, Semenov A A 2015 Appl. Phys. Lett. 106 102405Google Scholar
[17] Vlaminck V, Bailleul M 2008 Science 322 410Google Scholar
[18] Auld B A 1973 Acoustic Fields and Waves in Solids (New York: John Wiley and Sons Press
[19] Lewis M F 1985 Rayleigh-Wave Theory and Application (New York: Springer Press
[20] Casals B, Statuto N, Foerster M, Hernández-Mínguez A, Cichelero R, Manshausen P, Mandziak A, Aballe L, Hernàndez J M, Macià F 2020 Phys. Rev. Lett. 124 137202Google Scholar
[21] Babu N K P, Trzaskowska A, Graczyk P, Centała G, Mieszczak S, Głowiński H, Zdunek M, Mielcarek S, W Kłos J 2021 Nano Lett. 21 946Google Scholar
[22] Küß M, Heigl M, Flacke L, Hefele A, Hörner A, Weiler M, Albrecht M, Wixforth A 2021 Phys. Rev. Appl. 15 034046Google Scholar
[23] Huang M X, Hu W B, Zhang H W, Bai F M 2023 J. Appl. Phys. 133 223902Google Scholar
[24] Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601Google Scholar
[25] Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R, Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601Google Scholar
[26] Labanowski D, Jung A, Salahuddin S 2016 Appl. Phys. Lett. 108 022905Google Scholar
[27] Weiler M, Dreher L, Heeg C, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2011 Phys. Rev. Lett. 106 117601Google Scholar
[28] Dreher L, Weiler M, Pernpeintner M, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2012 Phys. Rev. B 86 134415Google Scholar
[29] Sasaki R, Nii Y, Iguchi Y, Onose Y 2017 Phys. Rev. B 95 020407Google Scholar
[30] Sasaki R, Nii Y, Onose Y 2021 Nat. Commun. 12 2599Google Scholar
[31] Tateno S, Nozaki Y 2020 Phys. Rev. Appl. 13 034074Google Scholar
[32] Hernández-Mínguez A, Macià F, Hernàndez J M, Herfort J, Santos P V 2020 Phys. Rev. Appl. 13 044018Google Scholar
[33] Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Albrecht M, Wixforth A 2020 Phys. Rev. Lett. 125 217203Google Scholar
[34] Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Wixforth A, Albrecht M 2021 Phys. Rev. Appl. 15 034060Google Scholar
[35] Verba R, Lisenkov I, Krivorotov I, Tiberkevich V, Slavin A 2018 Phys. Rev. Appl. 9 064014Google Scholar
[36] Verba R, Tiberkevich V, Slavin A 2019 Phys. Rev. Appl. 12 054061Google Scholar
[37] Shah P J, Bas D A, Lisenkov I, Matyushov A, Sun N X, Page M R 2020 Sci. Adv. 6 eabc5648Google Scholar
[38] Verba R, Bankowski E N, Meitzler T J, Tiberkevich V, Slavin A 2021 Adv. Electron. Mater. 7 2100263Google Scholar
[39] Bas D A, Verba R, Shah P J, Leontsev S, Matyushov A, Newburger M J, Sun N X, Tyberkevich V, Slavin A, Page M R 2022 Phys. Rev. Appl. 18 044003Google Scholar
[40] Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 024424Google Scholar
[41] Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 214412Google Scholar
[42] Küß M, Glamsch S, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 ACS Appl. Electron. Mater. 5 5103Google Scholar
[43] Huang M X, Liu Y Y, Hu W B, Wu Y T, Wang W, He W, Zhang H W, Bai F M 2024 Phys. Rev. Appl. 21 014035Google Scholar
[44] Chudnovsky E M, Jaafar R 2016 Phys. Rev. Appl. 5 031002Google Scholar
[45] Kobayashi D, Yoshikawa T, Matsuo M, Iguchi R, Maekawa S, Saitoh E, Nozaki Y 2017 Phys. Rev. Lett. 119 077202Google Scholar
[46] Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda J, Takahashi S, Maekawa S, Saitoh E 2015 Nat. Phys. 12 52Google Scholar
[47] Matsuo M, Ieda J I, Harii K, Saitoh E, Maekawa S 2013 Phys. Rev. B 87 180402Google Scholar
[48] Matsuo M, Ohnuma Y, Maekawa S 2017 Phys. Rev. B 96 020401Google Scholar
[49] Tateno S, Okano G, Matsuo M, Nozaki Y 2020 Phys. Rev. B 102 104406Google Scholar
[50] Kurimune Y, Matsuo M, Maekawa S, Nozaki Y 2020 Phys. Rev. B 102 174413Google Scholar
[51] Huang M X, Hu W B, Zhang H W, Bai F M 2023 Phys. Rev. B 107 134401Google Scholar
[52] Kurimune Y, Matsuo M, Nozaki Y 2020 Phys. Rev. Lett. 124 217205Google Scholar
[53] Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S, Otani Y 2020 Sci. Adv. 6 eabb1724Google Scholar
[54] Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153
[55] Gilbert T L 1955 Phys. Rev. 100 1243
[56] Einstein A, de Haas W J 1915 Verhandlungen 17 152
[57] Barnett S J 1915 Phys. Rev. 6 239Google Scholar
[58] Maekawa S, Tachiki M 1976 AIP Conf. Proc. 29 542Google Scholar
[59] Eshbach J R, Damon R W 1960 Phys. Rev. 118 1208Google Scholar
[60] Melkov G A, Vasyuchka V I, Lazovskiy V V, Tiberkevich V S, Slavin A N 2006 Appl. Phys. Lett. 89 252510Google Scholar
[61] Mruczkiewicz M, Krawczyk M, Gubbiotti G, Tacchi S, Filimonov Yu A, Kalyabin D V, Lisenkov I V, Nikitov S A 2013 New J. Phys. 15 113023Google Scholar
[62] Verba R, Tiberkevich V, Bankowski E, Meitzler T, Melkov G, Slavin A 2013 Appl. Phys. Lett. 103 082407Google Scholar
[63] Lisenkov I, Tyberkevych V, Slavin A, Bondarenko P, Ivanov B A, Bankowski E, Meitzler T, Nikitov S 2014 Phys. Rev. B 90 104417Google Scholar
[64] Dmytriiev O, Meitzler T, Bankowski E, Slavin A, Tiberkevich V 2010 J. Phys.: Condens. Matter 22 136001Google Scholar
[65] Gallardo R A, Alvarado-Seguel P, Schneider T, Gonzalez-Fuentes C, Roldán-Molina A, Lenz K, Lindner J, Landeros P 2019 New J. Phys. 21 033026Google Scholar
[66] Matsumoto H, Kawada T, Ishibashi M, Kawaguchi M, Hayashi M 2022 Appl. Phys. Express 15 063003Google Scholar
[67] Hu W B, Huang M X, Wu Y T, Jia Y N, Wang W, Bai F M 2024 Appl. Phys. Lett. 124 182405Google Scholar
[68] Küß M, Glamsch S, Hörner A, Albrecht M 2024 ACS Appl. Electron. Mater. 6 1790Google Scholar
[69] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar
[70] Lachance-Quirion D, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar
[71] Satzinger K J, Zhong Y P, Chang H S, Peairs G A, Bienfait A, Chou M H, Cleland A Y, Conner C R, DumurÉ, Grebel J, Gutierrez I, November B H, Povey R G, Whiteley S J, Awschalom D D, Schuster D I, Cleland A N 2018 Nature 563 661Google Scholar
[72] Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar
[73] An K, Litvinenko A N, Kohno R, Fuad A A, Naletov V V, Vila L, Ebels U, de Loubens G, Hurdequint H, Beaulieu N, Ben Youssef J, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2020 Phys. Rev. B 101 060407(RGoogle Scholar
[74] Chu Y, Kharel P, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar
[75] Bombeck M, Salasyuk A S, Glavin B A, Scherbakov A V, Brüggemann C, Yakovlev D R, Sapega V F, Liu X, Furdyna J K, Akimov A V, Bayer M 2012 Phys. Rev. B 85 195324Google Scholar
[76] Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204Google Scholar
[77] Polewczyk V, Dumesnil K, Lacour D, Moutaouekkil M, Mjahed H, Tiercelin N, Petit Watelot S, Mishra H, Dusch Y, Hage-Ali S, Elmazria O, Montaigne F, Talbi A, Bou Matar O, Hehn M 2017 Phys. Rev. Appl. 8 024001Google Scholar
[78] Liu X, Tong B, Ou-Yang J, Yang X, Chen S, Zhang Y, Zhu B 2018 Appl. Phys. Lett. 113 082402Google Scholar
[79] Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, Meyners D, Sun N X, McCord J, Gerken M, Schmidt G, Höft M, Köchel R, Faupel F, Quandt E 2018 Sci. Rep. 8 278Google Scholar
[80] Hu W B, Huang M X, Xie H P, Zhang H W, Bai F M 2023 Phys. Rev. Appl. 19 014010Google Scholar
[81] Hu W B, Wang Y D, Huang M X, Zhang H W, Bai F M 2023 Appl. Phys. Lett. 123 012406Google Scholar
[82] Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaître A, Gourdon C, Duquesne J Y 2016 Phys. Rev. B 93 134430Google Scholar
[83] Davis S, Baruth A, Adenwalla S 2010 Appl. Phys. Lett. 97 232507Google Scholar
[84] Al Misba W, Rajib M M, Bhattacharya D, Atulasimha J 2020 Phys. Rev. Appl. 14 014088Google Scholar
[85] Biswas A K, Bandyopadhyay S, Atulasimha J 2013 Appl. Phys. Lett. 103 232401Google Scholar
[86] Roe A, Bhattacharya D, Atulasimha J 2019 Appl. Phys. Lett. 115 112405Google Scholar
[87] Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Böhnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M, Schumacher H W 2018 Appl. Phys. Lett. 113 072403Google Scholar
[88] Zhang D L, Zhu J, Qu T, Lattery D M, Victora R H, Wang X, Wang J P 2020 Sci. Adv. 6 eabb4607Google Scholar
[89] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 1804004Google Scholar
[90] van Hees Y L W, van de Meugheuvel P, Koopmans B, Lavrijsen R 2020 Nat. Commun. 11 3835Google Scholar
[91] Edrington W, Singh U, Dominguez M A, Alexander J R, Nepal R, Adenwalla S 2018 Appl. Phys. Lett. 112 052402Google Scholar
[92] Dean J, Bryan M T, Cooper J D, Virbule A, Cunningham J E, Hayward T J 2015 Appl. Phys. Lett. 107 142405Google Scholar
[93] Wei Y, Li X, Gao R, Wu H, Wang X, Zeng Z, Wang J, Liu Q 2020 J. Magn. Magn. Mater. 502 166546Google Scholar
[94] Chen C, Fu S, Han L, Su R, Liu P, Chen R, Zhu W, Liao L, Pan F, Song C 2022 Adv. Electron. Mater. 8 2200593Google Scholar
[95] Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y 2020 Nat. Nanotechnol. 15 361Google Scholar
[96] Yang W G, Schmidt H 2020 Appl. Phys. Lett. 116 212401Google Scholar
[97] Yang W G, Jaris M, Berk C, Schmidt H 2019 Phys. Rev. B 99 104434Google Scholar
[98] Matsuda O, Tsutsui K, Vaudel G, Pezeril T, Fujita K, Gusev V 2020 Phys. Rev. B 101 224307Google Scholar
[99] Chen R, Chen C, Han L, Liu P, Su R, Zhu W, Zhou Y, Pan F, Song C 2023 Nat. Commun. 14 4427Google Scholar
-
图 1 求解LLG方程的坐标系设置. 插图显示了所采用的两个坐标系之间的关系. (x, y, z)坐标系由声表面波的传播方向、磁膜的面内横向方向和法线方向组成. (1, 2, 3)坐标系可以通过沿洋红色虚线箭头旋转(x, y, z)坐标系获得, 其中3轴平行于平衡状态下的磁化m0方向, 而1轴和2轴分别对于h1和h2方向[51]
Fig. 1. Coordinate system setting for solving LLG equation. The inset shows relation between the two coordinate systems employed. The (x, y, z) coordinate system consists of the propagation direction of the SAW, the transverse in-plane direction, and the normal of the FM film. In the (1, 2, 3) coordinate system, which can be obtained by rotating the (x, y, z) coordinate system along the magenta dotted arrows, the 3-axis is parallel to the m0 direction, whereas the 1- and 2-axis parallel to the h1 and h2 directions, respectively[51]
图 2 (a) 弹性应变驱动铁磁共振的实验设计与坐标系统说明, 右边展示了镍薄膜中的应变ε[27]; (b) 声表面波传输的幅值和相位随外加磁场的大小和方向的变化[27]; (c) 相干弹性波产生自旋泵浦的实验装置及坐标系说明[25]; (d), (e) ΔPIDT和ΔVDC关于SAW(空心符号)以及EMW(实心符号)脉冲的检测结果[25]
Fig. 2. (a) Illustration of elastically driven ferromagnetic resonance experimental setup and coordinate system. The close up to the right shows the strain ε in the nickel thin film[27]. (b) Evolution of the amplitude and phase for SAW transmission as a function of the magnitude and orientation of the external magnetic field[27]. (c) Illustration of spin pumping with coherent elastic waves experimental setup and coordinate system[25]. (d), (e) ΔPIDT and ΔVDC for the detection of the SAW (open symbols) and the EMW (solid symbols) pulses[25].
图 3 (a)—(c) 瑞利波、SH波和LL波的应变幅值εxx, εxy和εxz的有限元仿真结果; (d) Al (5 nm)/Ni (10 nm)/LiTaO3的器件结构示意图[22]; (e) 瑞利波在4.47 GHz下ΔS21, ΔS12以及ΔS21 – ΔS12的实验数据[22]; (f) SH波在3.47 GHz下ΔS21, ΔS12以及ΔS21–ΔS12的实验数据[22]; (g) Ni (20 nm)/ST切石英的器件结构示意图[23]; (h), (i) R3和LL3在不同外加磁场下的归一化功率吸收测试图[23]
Fig. 3. (a)–(c) The FEM eigenfrequency simulation results of the magnitude of the strain εxx, εxy and εxz for R-, SH- and LL-waves; (d) schematic illustration of the experimental setup for Al (5 nm)/Ni (10 nm)/LiTaO3[22]; (e) the experimental data ΔS21, ΔS12 and ΔS21 – ΔS12 of the R wave at 4.47 GHz[22]; (f) the experimental data ΔS21, ΔS12 and ΔS21–ΔS12 of the SH wave at 3.47 GHz[22]; (g) schematic experimental setup for Ni (20 nm)/Quartz ST[23]; (h), (i) polar plots of measured field-dependent normalized power absorption of the R3 (h) and LL3 (i)[23].
图 4 (a) SAW诱导自旋流产生的机制示意图[47]; (b) 导体表面产生的自旋积累[47]; (c), (d) 在R-SAW激励下通过SVC产生的SC (c)以及由SC注入导致的SWR产生MW吸收(d)的示意图[45]; (e) 测试SWR产生的MW吸收的实验设置图[45]; (f) Cu/NiFe/LiNbO3器件的光学照片[45]; (g) 归一化MW吸收在SAWs谐振峰处的角度依赖性[45]; (h) 归一化MW吸收在SAWs谐振峰处随Cu层厚度的变化[45]; (i) RSAW诱导Cu(200 nm)/ NiFe(20 nm)/Pt(10 nm)中自旋泵浦的实验设置[49]; (j) 微波吸收随频率以及外加磁场的变化[49]; (k) P21在外加磁场为20 mT时随频率的变化[49]; (l) 微波吸收以及 (m) 霍尔电压在SAW基频处随外加磁场的变化[49]
Fig. 4. (a) Snapshot of mechanical generation of spin current induced by SAW[47]; (b) spin accumulation induced on the surface[47]; (c), (d) schematic illustrations of (c) SC generation via SVC in R-SAW and (d) MW absorption owing to SWR excitation caused by SC injection[45]; (e) schematic experimental setup for measuring MW absorption caused by the SWR excitation[45]; (f) optical photograph of the Cu/NiFe/LiNbO3 device[45]; (g) angular dependence of the peak value of normalized MW absorption[45]; (h) Cu thickness dependence of the peak value of normalized MW absorption[45]; (i) experimental setup of RSAW-induced spin pumping in Cu(200 nm) /NiFe(20 nm)/Pt(10 nm)[49]; (j) color plots of microwave absorption in the external field versus the frequency plane[49]; (k) P21 at 20 mT as a function of frequency[49]; (l) microwave absorptions and (m) Hall voltages measured at each fundamental frequency of the RSAW[49].
图 5 (a), (b) 由R-SAW (a)和SH-SAW (b)通过SVC激发NM/FM结构中的自旋波共振(SWR)的示意图[51]; (c), (d) R-SAW (c)和SH-SAW (d)激发的SWR吸收功率$ {P_{{\mathrm{abs}}}} $随外加磁场变化的计算极坐标图[51]; (e) 不同频率的SH-SAWs激发下归一化功率吸收随外加磁场的变化[51]; (f) SH-SAWs激发的归一化吸收功率的频率依赖性[51]
Fig. 5. (a), (b) Schematic illustration of SWR in the NM/FM structure excited by the R-SAW (a) and SH-SAW (b) via SVC[51]; (c), (d) polar plot of the calculated SWR power absorption $ {P_{{\mathrm{abs}}}} $ excited by R-SAW (c) and SH-SAW (d) as a function of external magnetic fields[51]; (e) field dependent normalized power absorption of SH-SAWs measured at different frequencies[51]; (f) the frequency dependent normalized power absorption of SH-SAWs[51].
图 6 (a) 瑞利波在铁磁体激发的Barnett场的示意图[52]; (b) Barnett场引起的SAW功率吸收随外加磁场以及角度的变化示意图[52]; (c) 在NiFe/Cu, NiFe/Pt, NiFe/Ti, NiFe (ϕ = 0)和Ni (ϕ = π/4)结构中声功率吸收的R-SAW频率依赖性[50]; (d) 磁-旋转耦合的示意图[53]; (e) 在自旋波共振条件下, ±k方向传播的SAW功率吸收P±k对比[53]
Fig. 6. (a) Schematic illustration of Barnett field excited by Rayleigh waves in a ferromagnet[52]; (b) the angular dependence of SAW power absorption in NiFe films caused by Barnett field[52]; (c) R-SAW-frequency dependence of the MW absorption in NiFe/Cu, NiFe/Pt, NiFe/Ti, NiFe (ϕ = 0) and Ni (ϕ = π/4)[50]; (d) schematics of the magneto-rotation coupling[53]; (e) attenuation of acoustic waves near a spin-wave resonance condition for SAW propagating along +k and –k directions[53].
图 7 (a) 沉积在LiNiO3衬底上的Si/Ni双层膜结构通过磁弹性耦合产生非互易性[31]; (b) P–H/P+H随εxz/εxx的变化[31]; (c) Ni(20 nm)/Si(400 nm)双层膜结构在外加磁场沿π/6处的归一化吸收功率ΔP norm[31]; (d) P–H/P+H随Si层厚度的变化[31]
Fig. 7. (a) Experimental setup of nonreciprocal SW generation via magnetoelastic coupling in a Si/Ni bilayer deposited on LiNiO3 substrate [31]; (b) P–H/P+H as a function of εxz/εxx[31]; (c) ΔP norm of Ni(20 nm)/Si(400 nm) bilayer with the external field at π/6[31]; (d) P–H/P+H as a function of Si thickness[31].
图 8 (a), (b)两种非互易SW与AW发生磁弹性耦合的方法说明, 其中左列为AWs和SW的色散曲线, 图(a)中的插图展示了不同大小的能隙Δf; 右列为不同方向的AW传输参数[36]
Fig. 8. (a), (b) An illustration of two methods of inducing nonreciprocity of an AW by magnetoelastic coupling with a SW. Left column, spectra of AWs and SWs, the inset in panel (a) shows the opening of the magnetoelastic gap of different Δf; right column, AW transmission rates in opposite directions[36].
图 10 (a) 60°时计算得到的FeGaB(20 nm)/Al2O3(5 nm)/FeGaB(20 nm)结构磁弹性波的正向和反向传播的线性损耗随随外加磁场的变化[37]; (b) CoFeB(16 nm)/Ru(0.55 nm)/CoFeB(5 nm)结构的SAW传输参数ΔSij在5.08 GHz沿ϕH = 29°随外磁场大小的变化[42]; (c) NiFeCu/FeCoSiB磁弹双层膜结构示意图[43]; (d) 在2.33 GHz下沿φH – φG = 5°改变磁场测得的FeCoSiB(10 nm)/NiFeCu(10 nm)双层膜样品的$\left| {{S_{ij}}} \right|$[43]
Fig. 10. (a) Calculated linear loss of FeGaB(20 nm)/Al2O3(5 nm)/FeGaB(20 nm) for the magnetoelastic wave as a function of the applied magnetic field for forward and backward propagation for HG = 60°[37]; (b) change of the SAW transmission ΔSij of a CoFeB(16 nm)/Ru(0.55 nm)/CoFeB(5 nm) magnetic bilayer sample as a function of magnitude of the external magnetic field at 5.08 GHz along ϕH = 29°[42]; (c) a NiFeCu/FeCoSiB magnetoelastic bilayer structure[43]; (d) measured $\left| {{S_{ij}}} \right|$ of FeCoSiB(10 nm)/NiFeCu(10 nm) bilayer under different magnetic fields at 2.33 GHz (SH9) along angles φH – φG = 5°[43].
图 11 (a) 基于Ni(16 nm)/Ti(8 nm)/FeCoSiB(16 nm)异质结构的SH-SAW延迟线示意图和实物图[67]; (b) Ni/Ti/FeCoSiB, Ni81Fe19/Ti/FeCoSiB和Ni45Fe55/Ti/FeCoSiB三种构型薄膜的SAW功率吸收计算结果, 下图示意性画出了Ni/Ti/FeCoSiB结构中的光 学模和声学模的磁化进动, 其中顶层和底层中的等效驱动场总是反平行的[67]; (c) 在2.33 GHz下沿不同方向施加磁场测试得到的 ΔS21–ΔS12[67]; (d) 沿φH = 90°改变磁场的ΔSij测试(实线)和计算(虚线)结果[67]
Fig. 11. (a) Schematic illustration and optical image of a SH-SAW delay line based on a Ni(16 nm)/Ti(8 nm)/FeCoSiB(16 nm) heterostructure[67]; (b) calculated normalized SAW power absorption for Ni/Ti/FeCoSiB, Ni81Fe19/Ti/FeCoSiB and Ni45Fe55/Ti/FeCoSiB configurations, and the insets on the lower panel illustrate optical and acoustic resonance modes for the anti-magnetostrictive Ni/Ti/FeCoSiB configuration, where the effective driving fields in the top and bottom layers are always antiparallel[67]; (c) polar plots of the measured nonreciprocal transmission ΔS21–ΔS12 as a function of applied field $ H $ and field angle $ {\varphi }_{H} $[67]; (d) measured (solid lines) and calculated (dashed lines) field-dependent ΔSij along φH = 90° [67].
图 12 (a) 实现宽频非互易磁弹性耦合的方法说明. 左图为声表面波(绿色实线)和非互易自旋波(蓝色虚线)的色散曲线; 右图为不同方向的传输参数随频率的变化[36]; (b)扣除背底后的传输参数ΔS21随外加磁场的变化[68]; (c)宽频范围内, 在饱和磁场–400 mT和最佳偏置磁场–13.8 mT下, 沿ϕH = 85.5°角度方向测得的声表面波传输参数幅值Mag[Sij(f )][68]
Fig. 12. (a) Description of the method for realizing broadband non-reciprocal magnetoelastic coupling: left column, spectra of SAWs and SWs; right column, SAW transmission rates in opposite directions[36]. (b) The background-corrected transmission ΔS21 of counter-propagating waves as a function of the external magnetic field magnitude[68]. (c) Over a wide range of frequencies, the SAW transmission magnitude Mag[Sij(f )] at –13.8 mT and –400 mT along ϕH = 85.5° [68].
表 1 在各种模式SAWs激发下的三种不同类型磁声耦合的特征
Table 1. Comparison of three magnon-phonon coupling characteristics excited by different types of SAWs.
耦合类型 SAWs模式 应变场分量 方向 相位 等效驱动磁场的角度依赖性 功率吸收的频率依赖性 磁弹性耦合 R[28] εxx 面内 i $ \sin 2\left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f εxz 面外 1 $ \cos \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 3 SH[22] εxy 面内 / $ \cos 2\left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f LL[23] εxx 面内 / $ \sin 2\left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 自旋-涡度耦合-非磁性层 R[45] $ J_{\mathrm{s}}^Y $ 面外 / $ \cos \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 7 SH[51] $ J_{\mathrm{s}}^X $ 面外 i $ \sin \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 7 $ J_{\mathrm{s}}^Z $ 面内 1 1 f 5 自旋-涡度耦合-Barnett场 R[52] Ωy 面内 / $ \cos \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 3 SH[52] Ωx 面内 i $ \sin \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 3 Ωz 面外 1 1 f 5 磁-旋转耦合 R[53] $ {\omega _{xz}} $ 面外 / $ \cos \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 3 SH[53] $ {\omega _{yz}} $ 面外 / $ \sin \left( {{\varphi _0} - {\varphi _{\mathrm{G}}}} \right) $ f 3 注: “/”表示在只有一种驱动场分量的情况下, 无相对的相位差异. f n表示其与频率的n次方成正比. 表 2 文献报道的磁声器件的SAWs传输非互易性ΔS±、磁声插入损耗ILΔ和声延迟线本身的插入损耗IL0
Table 2. Reported SAWs transmission nonreciprocity ΔS±, magnetoacoustic insertion loss ILΔ, and insertion loss of the acoustic delay line IL0 for magnetoacoustic hybrid devices in literature.
磁结构/nm 非互易起源 f/GHz lf/mm IL0/dB ILΔ/lf /(dB·mm–1) ΔS±/lf /(dB·mm–1) Ref. Ni(30) HME 2.24 0.8 47 0.34 0.03 [29] Ni(20)/Si(400) HME 1.85 0.4 N/A 0.003 0.03 [31] CoFeB(5)/Pt HME, iDMI 6.77 0.75 71 22 28 [33] FeGaB(20)/Al2O3(5)/FeGaB(20) IDC 1.435 2.2 55 4 22 [37] NiFe(20)/Au(5)/CoFeB(5) IDC, HME 6.87 0.5 89 1.6 74 [34] CoFeB(16)/Ru(0.55)/CoFeB(5) IDC 5.08 0.15 81 0.9 250 [42] FeCoSiB(10)/NiFeCu(10) IDC 2.33 0.5 54 30 60 [43] Ni(16)/Ti(8)/FeCoSiB(16) IDC 2.33 0.5 51 4 80 [67] CoFeB(16)/Ru(0.55)/CoFeB(14) IDC 2.8—7 0.1 60 0.8 50 [68] -
[1] Takahashi S, Maekawa S 2008 J. Phys. Soc. Jpn. 77 031009Google Scholar
[2] Stancil D D, Prabhakar A 2009 Quantum theory of spin waves (New York: Springer Press
[3] Uchida K I, Saitoh E 2016 Spin current (New York: John Wiley & Sons Press
[4] Uchida K I, Adachi H, Kajiwara Y, Maekawa S, Saitoh E 2013 Solid State Phys. 64 1Google Scholar
[5] Adachi H, Uchida K I, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501Google Scholar
[6] Kruglyak V V, Demokritov S O, Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001Google Scholar
[7] Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar
[8] Reed K W, Owens J M, Carter R L 1985 Circuits Syst. Signal Press. 4 157Google Scholar
[9] Kim S K, Lee K S, Han D S 2009 Appl. Phys. Lett. 95 082507Google Scholar
[10] Wang Q, Zhong Z Y, Jin L C, Tang X L, Bai F M, Zhang H W, Beach G S D 2013 J. Magn. Magn. Mater. 340 23Google Scholar
[11] Chumak A V, Vasyuchka V I, Serga A A, Kostylev M P, Tiberkevich V S, Hillebrands B 2012 Phys. Rev. Lett. 108 257207Google Scholar
[12] Nakane R, Tanaka G, Hirose A 2018 IEEE Access 6 4462Google Scholar
[13] Sluka V, Schneider T, Gallardo R A, Kákay A, Weigand M, Warnatz T, Mattheis R, Roldán-Molina A, Landeros P, Tiberkevich V, Slavin A, Schütz G, Erbe A, Deac A, Lindner J, Raabe J, Fassbender J, Wintz S 2019 Nat. Nanotechnol. 14 328Google Scholar
[14] Jamali M, Kwon J, Seo S, Lee K J, Yang H 2013 Sci. Rep. 3 3160Google Scholar
[15] Chumak A, Serga A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar
[16] Nikitin A A, Ustinov A B, Semenov A A 2015 Appl. Phys. Lett. 106 102405Google Scholar
[17] Vlaminck V, Bailleul M 2008 Science 322 410Google Scholar
[18] Auld B A 1973 Acoustic Fields and Waves in Solids (New York: John Wiley and Sons Press
[19] Lewis M F 1985 Rayleigh-Wave Theory and Application (New York: Springer Press
[20] Casals B, Statuto N, Foerster M, Hernández-Mínguez A, Cichelero R, Manshausen P, Mandziak A, Aballe L, Hernàndez J M, Macià F 2020 Phys. Rev. Lett. 124 137202Google Scholar
[21] Babu N K P, Trzaskowska A, Graczyk P, Centała G, Mieszczak S, Głowiński H, Zdunek M, Mielcarek S, W Kłos J 2021 Nano Lett. 21 946Google Scholar
[22] Küß M, Heigl M, Flacke L, Hefele A, Hörner A, Weiler M, Albrecht M, Wixforth A 2021 Phys. Rev. Appl. 15 034046Google Scholar
[23] Huang M X, Hu W B, Zhang H W, Bai F M 2023 J. Appl. Phys. 133 223902Google Scholar
[24] Zhang S, Levy P M, Fert A 2002 Phys. Rev. Lett. 88 236601Google Scholar
[25] Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R, Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601Google Scholar
[26] Labanowski D, Jung A, Salahuddin S 2016 Appl. Phys. Lett. 108 022905Google Scholar
[27] Weiler M, Dreher L, Heeg C, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2011 Phys. Rev. Lett. 106 117601Google Scholar
[28] Dreher L, Weiler M, Pernpeintner M, Huebl H, Gross R, Brandt M S, Goennenwein S T B 2012 Phys. Rev. B 86 134415Google Scholar
[29] Sasaki R, Nii Y, Iguchi Y, Onose Y 2017 Phys. Rev. B 95 020407Google Scholar
[30] Sasaki R, Nii Y, Onose Y 2021 Nat. Commun. 12 2599Google Scholar
[31] Tateno S, Nozaki Y 2020 Phys. Rev. Appl. 13 034074Google Scholar
[32] Hernández-Mínguez A, Macià F, Hernàndez J M, Herfort J, Santos P V 2020 Phys. Rev. Appl. 13 044018Google Scholar
[33] Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Albrecht M, Wixforth A 2020 Phys. Rev. Lett. 125 217203Google Scholar
[34] Küß M, Heigl M, Flacke L, Hörner A, Weiler M, Wixforth A, Albrecht M 2021 Phys. Rev. Appl. 15 034060Google Scholar
[35] Verba R, Lisenkov I, Krivorotov I, Tiberkevich V, Slavin A 2018 Phys. Rev. Appl. 9 064014Google Scholar
[36] Verba R, Tiberkevich V, Slavin A 2019 Phys. Rev. Appl. 12 054061Google Scholar
[37] Shah P J, Bas D A, Lisenkov I, Matyushov A, Sun N X, Page M R 2020 Sci. Adv. 6 eabc5648Google Scholar
[38] Verba R, Bankowski E N, Meitzler T J, Tiberkevich V, Slavin A 2021 Adv. Electron. Mater. 7 2100263Google Scholar
[39] Bas D A, Verba R, Shah P J, Leontsev S, Matyushov A, Newburger M J, Sun N X, Tyberkevich V, Slavin A, Page M R 2022 Phys. Rev. Appl. 18 044003Google Scholar
[40] Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 024424Google Scholar
[41] Küß M, Hassan M, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 Phys. Rev. B 107 214412Google Scholar
[42] Küß M, Glamsch S, Kunz Y, Hörner A, Weiler M, Albrecht M 2023 ACS Appl. Electron. Mater. 5 5103Google Scholar
[43] Huang M X, Liu Y Y, Hu W B, Wu Y T, Wang W, He W, Zhang H W, Bai F M 2024 Phys. Rev. Appl. 21 014035Google Scholar
[44] Chudnovsky E M, Jaafar R 2016 Phys. Rev. Appl. 5 031002Google Scholar
[45] Kobayashi D, Yoshikawa T, Matsuo M, Iguchi R, Maekawa S, Saitoh E, Nozaki Y 2017 Phys. Rev. Lett. 119 077202Google Scholar
[46] Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda J, Takahashi S, Maekawa S, Saitoh E 2015 Nat. Phys. 12 52Google Scholar
[47] Matsuo M, Ieda J I, Harii K, Saitoh E, Maekawa S 2013 Phys. Rev. B 87 180402Google Scholar
[48] Matsuo M, Ohnuma Y, Maekawa S 2017 Phys. Rev. B 96 020401Google Scholar
[49] Tateno S, Okano G, Matsuo M, Nozaki Y 2020 Phys. Rev. B 102 104406Google Scholar
[50] Kurimune Y, Matsuo M, Maekawa S, Nozaki Y 2020 Phys. Rev. B 102 174413Google Scholar
[51] Huang M X, Hu W B, Zhang H W, Bai F M 2023 Phys. Rev. B 107 134401Google Scholar
[52] Kurimune Y, Matsuo M, Nozaki Y 2020 Phys. Rev. Lett. 124 217205Google Scholar
[53] Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S, Otani Y 2020 Sci. Adv. 6 eabb1724Google Scholar
[54] Landau L D, Lifshitz E M 1935 Phys. Z. Sowietunion 8 153
[55] Gilbert T L 1955 Phys. Rev. 100 1243
[56] Einstein A, de Haas W J 1915 Verhandlungen 17 152
[57] Barnett S J 1915 Phys. Rev. 6 239Google Scholar
[58] Maekawa S, Tachiki M 1976 AIP Conf. Proc. 29 542Google Scholar
[59] Eshbach J R, Damon R W 1960 Phys. Rev. 118 1208Google Scholar
[60] Melkov G A, Vasyuchka V I, Lazovskiy V V, Tiberkevich V S, Slavin A N 2006 Appl. Phys. Lett. 89 252510Google Scholar
[61] Mruczkiewicz M, Krawczyk M, Gubbiotti G, Tacchi S, Filimonov Yu A, Kalyabin D V, Lisenkov I V, Nikitov S A 2013 New J. Phys. 15 113023Google Scholar
[62] Verba R, Tiberkevich V, Bankowski E, Meitzler T, Melkov G, Slavin A 2013 Appl. Phys. Lett. 103 082407Google Scholar
[63] Lisenkov I, Tyberkevych V, Slavin A, Bondarenko P, Ivanov B A, Bankowski E, Meitzler T, Nikitov S 2014 Phys. Rev. B 90 104417Google Scholar
[64] Dmytriiev O, Meitzler T, Bankowski E, Slavin A, Tiberkevich V 2010 J. Phys.: Condens. Matter 22 136001Google Scholar
[65] Gallardo R A, Alvarado-Seguel P, Schneider T, Gonzalez-Fuentes C, Roldán-Molina A, Lenz K, Lindner J, Landeros P 2019 New J. Phys. 21 033026Google Scholar
[66] Matsumoto H, Kawada T, Ishibashi M, Kawaguchi M, Hayashi M 2022 Appl. Phys. Express 15 063003Google Scholar
[67] Hu W B, Huang M X, Wu Y T, Jia Y N, Wang W, Bai F M 2024 Appl. Phys. Lett. 124 182405Google Scholar
[68] Küß M, Glamsch S, Hörner A, Albrecht M 2024 ACS Appl. Electron. Mater. 6 1790Google Scholar
[69] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar
[70] Lachance-Quirion D, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar
[71] Satzinger K J, Zhong Y P, Chang H S, Peairs G A, Bienfait A, Chou M H, Cleland A Y, Conner C R, DumurÉ, Grebel J, Gutierrez I, November B H, Povey R G, Whiteley S J, Awschalom D D, Schuster D I, Cleland A N 2018 Nature 563 661Google Scholar
[72] Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar
[73] An K, Litvinenko A N, Kohno R, Fuad A A, Naletov V V, Vila L, Ebels U, de Loubens G, Hurdequint H, Beaulieu N, Ben Youssef J, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2020 Phys. Rev. B 101 060407(RGoogle Scholar
[74] Chu Y, Kharel P, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar
[75] Bombeck M, Salasyuk A S, Glavin B A, Scherbakov A V, Brüggemann C, Yakovlev D R, Sapega V F, Liu X, Furdyna J K, Akimov A V, Bayer M 2012 Phys. Rev. B 85 195324Google Scholar
[76] Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204Google Scholar
[77] Polewczyk V, Dumesnil K, Lacour D, Moutaouekkil M, Mjahed H, Tiercelin N, Petit Watelot S, Mishra H, Dusch Y, Hage-Ali S, Elmazria O, Montaigne F, Talbi A, Bou Matar O, Hehn M 2017 Phys. Rev. Appl. 8 024001Google Scholar
[78] Liu X, Tong B, Ou-Yang J, Yang X, Chen S, Zhang Y, Zhu B 2018 Appl. Phys. Lett. 113 082402Google Scholar
[79] Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, Meyners D, Sun N X, McCord J, Gerken M, Schmidt G, Höft M, Köchel R, Faupel F, Quandt E 2018 Sci. Rep. 8 278Google Scholar
[80] Hu W B, Huang M X, Xie H P, Zhang H W, Bai F M 2023 Phys. Rev. Appl. 19 014010Google Scholar
[81] Hu W B, Wang Y D, Huang M X, Zhang H W, Bai F M 2023 Appl. Phys. Lett. 123 012406Google Scholar
[82] Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaître A, Gourdon C, Duquesne J Y 2016 Phys. Rev. B 93 134430Google Scholar
[83] Davis S, Baruth A, Adenwalla S 2010 Appl. Phys. Lett. 97 232507Google Scholar
[84] Al Misba W, Rajib M M, Bhattacharya D, Atulasimha J 2020 Phys. Rev. Appl. 14 014088Google Scholar
[85] Biswas A K, Bandyopadhyay S, Atulasimha J 2013 Appl. Phys. Lett. 103 232401Google Scholar
[86] Roe A, Bhattacharya D, Atulasimha J 2019 Appl. Phys. Lett. 115 112405Google Scholar
[87] Yang H F, Garcia-Sanchez F, Hu X K, Sievers S, Böhnert T, Costa J D, Tarequzzaman M, Ferreira R, Bieler M, Schumacher H W 2018 Appl. Phys. Lett. 113 072403Google Scholar
[88] Zhang D L, Zhu J, Qu T, Lattery D M, Victora R H, Wang X, Wang J P 2020 Sci. Adv. 6 eabb4607Google Scholar
[89] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 1804004Google Scholar
[90] van Hees Y L W, van de Meugheuvel P, Koopmans B, Lavrijsen R 2020 Nat. Commun. 11 3835Google Scholar
[91] Edrington W, Singh U, Dominguez M A, Alexander J R, Nepal R, Adenwalla S 2018 Appl. Phys. Lett. 112 052402Google Scholar
[92] Dean J, Bryan M T, Cooper J D, Virbule A, Cunningham J E, Hayward T J 2015 Appl. Phys. Lett. 107 142405Google Scholar
[93] Wei Y, Li X, Gao R, Wu H, Wang X, Zeng Z, Wang J, Liu Q 2020 J. Magn. Magn. Mater. 502 166546Google Scholar
[94] Chen C, Fu S, Han L, Su R, Liu P, Chen R, Zhu W, Liao L, Pan F, Song C 2022 Adv. Electron. Mater. 8 2200593Google Scholar
[95] Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y 2020 Nat. Nanotechnol. 15 361Google Scholar
[96] Yang W G, Schmidt H 2020 Appl. Phys. Lett. 116 212401Google Scholar
[97] Yang W G, Jaris M, Berk C, Schmidt H 2019 Phys. Rev. B 99 104434Google Scholar
[98] Matsuda O, Tsutsui K, Vaudel G, Pezeril T, Fujita K, Gusev V 2020 Phys. Rev. B 101 224307Google Scholar
[99] Chen R, Chen C, Han L, Liu P, Su R, Zhu W, Zhou Y, Pan F, Song C 2023 Nat. Commun. 14 4427Google Scholar
计量
- 文章访问数: 1976
- PDF下载量: 117
- 被引次数: 0