搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位调制的高相干光源照明匀化方法

魏嘉昕 沙鹏飞 方旭晨 卢增雄 李慧 谭芳蕊 吴晓斌

引用本文:
Citation:

基于相位调制的高相干光源照明匀化方法

魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌

Illumination homogenization of highly coherent light source based on phase modulation

Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin
PDF
HTML
导出引用
  • 蝇眼透镜被用于高相干性激光的整形匀化时, 会产生多子光束干涉现象导致照明面光强呈现梳状分布. 本文建立了一种蝇眼随机相位调制匀化系统仿真模型, 对蝇眼透镜子光束进行随机相位调制, 并统计平均多次照明光强. 理论和仿真分析证明该方法可以有效地消除干涉图案, 提高照明均匀性. 进一步展示了蝇眼透镜子孔径和焦距对该系统匀化效果的影响, 并通过优化系统参数和结构, 减弱了蝇眼透镜衍射效应的影响, 提高了匀化效果, 最终在100 mm2的方形区域内实现了不均匀性小于1.2%的均匀照明.
    When using a fly’s eye lens system to homogenize highly coherent light sources, the interference effect between the sub-beams can cause a periodic speckle distribution of illumination intensity, thereby disrupting illumination uniformity. It has been shown that using a rotating optical phase-shift plate behind the fly’s eye lens can eliminate interference patterns, but it only demonstrates engineering realizations. And the theoretical analysis and technical guidance on the phase modulation method and statistical averaging method for fly’s eye lens homogenization systems are still lacking. In this work, a simulation model of fly’s eye random phase modulation homogenization system is developed and studied in detail. Each sub-beam of the fly’s eye lens is randomly phase-modulated to break the coherence condition, and the illumination intensity of multiple independent modulations is accumulated to eliminate the interference pattern. The more times the intensity is accumulated, the better the homogenization is. Meanwhile, studied in this paper are the influence of the diffraction effect on homogenization, and the influence of the sub-lens size and focal length on the homogenization, which result in the diffracting-type system and the imaging-type system respectively. For an imaging type system, it is necessary to ensure that the first fly’s eye lens is in the front focal plane of the second fly’s eye lens. By optimizing the parameters of the fly’s eye lens and using an imaging-type system with p = 1.8 mm and fA = 9 mm, a Gaussian beam with the non-uniformity of 117% is homogenized into a flat-topped beam with the non-uniformity of 1.2% in a square illumination area of 100 mm2. This fly’s eye lens random phase modulation homogenization system has a simple structure, low energy loss, and good illumination uniformity, and can be used in systems that require high coherent laser input and high resolution. This technology can be used in the field of deep-ultraviolet mask defect detection.
      通信作者: 吴晓斌, wuxiaobin@ime.ac.cn
      Corresponding author: Wu Xiao-Bin, wuxiaobin@ime.ac.cn
    [1]

    郁道银, 谈恒英 2006 工程光学 (北京: 机械工业出版社) 第165页

    Yu D Y, Tan H Y 2006 Engineering Optics (Beijing: China Machine Press) p165

    [2]

    许祖彦 2006 激光与红外 36 737Google Scholar

    Xu Z Y 2006 Laser Infrared 36 737Google Scholar

    [3]

    Deng L X, Dong T H, Fang Y W, Yang Y H, Gu C, Ming H, Xu L X 2021 Opt. Laser Tech. 135 106686Google Scholar

    [4]

    Wierer J J, Tsao J Y 2015 Phys. Status Solidi A 212 980Google Scholar

    [5]

    Farshidianfar M H, Khajepouhor A, Gerlich A P 2017 Surf. Coat. Tech. 315 326Google Scholar

    [6]

    Takada A, Tojo T, Shibuya M 2008 J. Micro-nanolith. Mem. 7 043010Google Scholar

    [7]

    Dickey F M 2014 Laser Beam Shaping Theory and Techniques (2nd Ed.) (Boca Raton: CRC Press) pp406–414

    [8]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 377Google Scholar

    [9]

    Streibl N, Nölscher U, Jahns J, Walker S 1991 Appl. Opt. 30 2739Google Scholar

    [10]

    郑昕, 戴深宇, 张玉莹, 赵帅 2023 光学学报 43 1014005Google Scholar

    Zheng X, Dai S Y, Zhang Y Y, Zhao S 2023 Acta Opt. Sin. 43 1014005Google Scholar

    [11]

    Zhang F, Zhu J, Yang B X, Huang L H, Hu X B, Xiao Y F, Huang H J 2013 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems Beijing, China, November 17–19, 2013 p904619

    [12]

    Jin Y H, Hassan A L, Jiang Y J 2016 Opt. Express 24 24846Google Scholar

    [13]

    Büttner A, Zeitner U D 2002 Opt. Eng. 41 2393Google Scholar

    [14]

    傅思祖, 孙玉琴, 黄秀光, 吴江, 周关林, 顾援 2003 中国激光 30 129

    Fu S Z, Sun Y Q, Huang X G, Wu J, Zhou G L, Gu Y 2003 Chin. J. Lasers 30 129

    [15]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Photon Management Strasbourg, France, April 26-30, 2004 p99

    [16]

    Wippermann F, Zeitner U D, Dannberg P, Bräuer A, Sinzinger S 2007 Opt. Express 15 6218Google Scholar

    [17]

    Cao A, Pang H, Wang J Z, Zhang M, Shi L F, Deng Q L 2015 IEEE Photonics J. 7 2400207Google Scholar

    [18]

    Kopp C, Ravel L, Meyrueis P 1999 J. Opt. A Pure Appl. Opt. 1 398Google Scholar

    [19]

    裴宪梓, 梁永浩, 王菲, 朱效立, 谢常青 2019 光子学报 48 314001Google Scholar

    Pei X Z, Liang Y H, Wang F, Zhu L X, Xie C Q 2019 Acta Photonica Sin. 48 314001Google Scholar

    [20]

    Zhao X H, Gao Y Q, Li F J, Ji L L, Cui Y, Rao D X, Feng W, Ma W X 2019 Appl. Opt. 58 2121Google Scholar

    [21]

    Li F J, Gao Y Q, Zhao X H, Xia L, Liu D, Ji L L, Feng W, Rao D X, Cui Y, Shi H T, Liu J N, Ma W X, Sui Z 2020 Appl. Opt. 59 2976Google Scholar

    [22]

    Voelkel R, Weible K J 2008 Optical Fabrication, Testing, & Metrology III Glasgow, Scotland, United Kingdom, September 2–5, 2008 p71020J

    [23]

    Oohashi K, Inoue H, Nomura T, Ono A, Tabata M, Suzuki H 2000 Photomask and Next Generation Lithography Mask Technology VII Kanagawa, Japan, April 12–13, 2000 p452

    [24]

    古德曼 J W 著 (陈家壁, 秦克诚, 曹其智 译) 2020 傅里叶光学导论(北京: 科学出版社) 第145— 151页

    Goodman J W (translated by Chen J B, Qin K C, Cao Q Z) 2020 Introduction to Fourier Optics (Beijing: Science Press) pp145–151

    [25]

    李丽, 韩学勤, 赵士伟, 包鸿音, 王兴宾 2014 激光与光电子学进展 51 011401

    Li L, Han X Q, Zhao S W, Bao H Y, Wang X B 2014 Laser Optoelectronics Prog. 51 011401

  • 图 1  传统蝇眼透镜匀化系统光路图 (a)衍射型; (b)成像型

    Fig. 1.  Schematic diagram of conventional fly’s eye lens homogenization system: (a) Diffracting-type; (b) imaging-type.

    图 2  蝇眼随机相位调制匀化系统光路图 (a)衍射型; (b)成像型

    Fig. 2.  Schematic diagram of the fly’s eye random phase modulation homogenization system: (a) Diffracting-type; (b) imaging-type.

    图 3  传统蝇眼透镜匀化系统仿真结果 (a)衍射型系统照明面一维光强分布图和局部放大图; (b)成像型系统照明面一维光强分布图和局部放大图; (c)干涉图案二维局部放大图

    Fig. 3.  Simulation results of a conventional fly’s eye lens homogenization system: (a) One-dimensional (1D) intensity distribution at the illumination surface of a diffracting-type system and its partial enlarged image; (b) 1D intensity distribution at the illumination surface of a imaging-type system and its partial enlarged image; (c) two-dimensional (2D) localized enlargement of the interference pattern.

    图 4  衍射型蝇眼随机相位调制匀化系统消相干效果 (a) 累加10次; (b) 累加100次; (c) 累加300次; (d) 累加500次

    Fig. 4.  Decoherence effects of a diffracting type fly’s eye random phase modulation homogenization system: (a) Cumulative 10 times; (b) cumulative 100 times; (c) cumulative 300 times; (d) cumulative 500 times.

    图 5  不同子孔径下衍射型系统的匀化效果比较 (a) 不均匀性随子孔径的变化; (b) 不均匀性随叠加次数的变化

    Fig. 5.  Comparison of homogenization effects of diffracting-type systems with different p: (a) The variation of non-uniformity with p; (b) the variation of non-uniformity with cumulative times.

    图 6  不同子孔径的衍射型系统的照明面光强分布 (a) p = 0.3 mm; (b) p = 0.9 mm; (c) p = 1.5 mm; (d) p = 2 mm; (e) p = 3 mm; (f) p = 4 mm

    Fig. 6.  Illumination intensity distribution of diffracting-type systems with different p: (a) p = 0.3 mm; (b) p = 0.9 mm; (c) p = 1.5 mm; (d) p = 2 mm; (e) p = 3 mm; (f) p = 4 mm.

    图 7  不同子透镜焦距下衍射型系统的匀化效果 (a)不均匀性随子孔径焦距的变化; (b)不均匀性随叠加次数的变化

    Fig. 7.  Comparison of homogenization effects of diffracting-type systems with different fA: (a) The variation of non-uniformity with fA; (b) the variation of non-uniformity with cumulative times.

    图 8  不同子透镜焦距的衍射型系统照明光强分布 (a) fA = 5 mm; (b) fA = 25 mm; (c) fA = 45 mm

    Fig. 8.  Illumination intensity distribution of diffracting-type systems with different fA: (a) fA = 5 mm; (b) fA = 25 mm; (c) fA = 45 mm.

    图 9  p = 2 mm, fA = 10 mm的衍射型匀化系统的照明光强分布 (a)一维光强分布图; (b)二维光强分布图

    Fig. 9.  llumination intensity distribution of a diffracting-type homogenizing system with p = 2 mm and fA = 10 mm: (a) 1D distribution of intensity; (b) 2D distribution of intensity

    图 10  成像型蝇眼随机相位调制匀化系统消相干效果 (a)叠加10次; (b)叠加100次; (c)叠加300次; (a)叠加500次

    Fig. 10.  Decoherence effects of a imaging-type fly’s eye random phase modulation homogenization system: (a) Cumulative 10 times; (b) cumulative 100 times; (c) cumulative 300 times; (d) cumulative 500 times.

    图 11  不同子孔径下成像型系统的匀化效果比较 (a) 不均匀性随子孔径的变化; (b) 不均匀性随叠加次数的变化

    Fig. 11.  Comparison of homogenization effects of imaging-type systems with different p: (a) The variation of non-uniformity with p; (b) the variation of non-uniformity with cumulative times.

    图 12  不同子孔径的成像型系统的照明面光强分布 (a) p = 0.3 mm; (b) p = 0.9 mm; (c) p = 1.5 mm; (d) p = 2 mm; (e) p = 3 mm; (f) p = 4 mm

    Fig. 12.  Illumination intensity distribution of imaging-type systems with different p: (a) p = 0.3 mm; (b) p = 0.9 mm; (c) p = 1.5 mm; (d) p = 2 mm; (e) p = 3 mm; (f) p = 4 mm.

    图 13  不同子透镜焦距下成像型系统的匀化效果 (a)不均匀性随子透镜焦距的变化; (b) 不均匀性随叠加次数的变化

    Fig. 13.  Comparison of homogenization effects of imaging-type systems with different fA : (a) The variation of non-uniformity with fA; (b) the variation of non-uniformity with cumulative times.

    图 14  不同子透镜焦距的成像型系统照明光强分布 (a) fA = 5 mm; (b) fA = 25 mm; (c) fA = 45 mm

    Fig. 14.  Illumination intensity distribution of imaging-type systems with different fA: (a) fA = 5 mm; (b) fA = 25 mm; (c) fA = 45 mm.

    图 15  传统结构和离焦结构的匀化效果比较 (a)传统结构; (b) fA2 = fA1的离焦结构; (c) fA2 = fA1 + δ的离焦结构

    Fig. 15.  Comparison of homogenization effects between conventional and defocused structures: (a) Conventional structure; (b) defocused structures and fA2 = fA1; (c) defocused structures and fA2 = fA1 + δ.

    图 16  离焦量对匀化效果的影响 (a)不均匀性随离焦量的变化; (b) δ= 9 mm的照明面光强分布

    Fig. 16.  Influence of the amount of defocusing on the homogenization effects: (a) The variation of non-uniformity with the amount of defocusing; (b) distribution of intensity on the illuminated surface for δ = 9 mm.

    图 17  p = 1.8 mm, fA = 9 mm的衍射型匀化系统的照明光强分布 (a)光强一维分布图; (b)光强二维分布图

    Fig. 17.  llumination intensity distribution of a imaging-type homogenizing system with p = 1.8 mm and fA = 9 mm: (a) 1D distribution of intensity; (b) 2D distribution of intensity.

  • [1]

    郁道银, 谈恒英 2006 工程光学 (北京: 机械工业出版社) 第165页

    Yu D Y, Tan H Y 2006 Engineering Optics (Beijing: China Machine Press) p165

    [2]

    许祖彦 2006 激光与红外 36 737Google Scholar

    Xu Z Y 2006 Laser Infrared 36 737Google Scholar

    [3]

    Deng L X, Dong T H, Fang Y W, Yang Y H, Gu C, Ming H, Xu L X 2021 Opt. Laser Tech. 135 106686Google Scholar

    [4]

    Wierer J J, Tsao J Y 2015 Phys. Status Solidi A 212 980Google Scholar

    [5]

    Farshidianfar M H, Khajepouhor A, Gerlich A P 2017 Surf. Coat. Tech. 315 326Google Scholar

    [6]

    Takada A, Tojo T, Shibuya M 2008 J. Micro-nanolith. Mem. 7 043010Google Scholar

    [7]

    Dickey F M 2014 Laser Beam Shaping Theory and Techniques (2nd Ed.) (Boca Raton: CRC Press) pp406–414

    [8]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 377Google Scholar

    [9]

    Streibl N, Nölscher U, Jahns J, Walker S 1991 Appl. Opt. 30 2739Google Scholar

    [10]

    郑昕, 戴深宇, 张玉莹, 赵帅 2023 光学学报 43 1014005Google Scholar

    Zheng X, Dai S Y, Zhang Y Y, Zhao S 2023 Acta Opt. Sin. 43 1014005Google Scholar

    [11]

    Zhang F, Zhu J, Yang B X, Huang L H, Hu X B, Xiao Y F, Huang H J 2013 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems Beijing, China, November 17–19, 2013 p904619

    [12]

    Jin Y H, Hassan A L, Jiang Y J 2016 Opt. Express 24 24846Google Scholar

    [13]

    Büttner A, Zeitner U D 2002 Opt. Eng. 41 2393Google Scholar

    [14]

    傅思祖, 孙玉琴, 黄秀光, 吴江, 周关林, 顾援 2003 中国激光 30 129

    Fu S Z, Sun Y Q, Huang X G, Wu J, Zhou G L, Gu Y 2003 Chin. J. Lasers 30 129

    [15]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Photon Management Strasbourg, France, April 26-30, 2004 p99

    [16]

    Wippermann F, Zeitner U D, Dannberg P, Bräuer A, Sinzinger S 2007 Opt. Express 15 6218Google Scholar

    [17]

    Cao A, Pang H, Wang J Z, Zhang M, Shi L F, Deng Q L 2015 IEEE Photonics J. 7 2400207Google Scholar

    [18]

    Kopp C, Ravel L, Meyrueis P 1999 J. Opt. A Pure Appl. Opt. 1 398Google Scholar

    [19]

    裴宪梓, 梁永浩, 王菲, 朱效立, 谢常青 2019 光子学报 48 314001Google Scholar

    Pei X Z, Liang Y H, Wang F, Zhu L X, Xie C Q 2019 Acta Photonica Sin. 48 314001Google Scholar

    [20]

    Zhao X H, Gao Y Q, Li F J, Ji L L, Cui Y, Rao D X, Feng W, Ma W X 2019 Appl. Opt. 58 2121Google Scholar

    [21]

    Li F J, Gao Y Q, Zhao X H, Xia L, Liu D, Ji L L, Feng W, Rao D X, Cui Y, Shi H T, Liu J N, Ma W X, Sui Z 2020 Appl. Opt. 59 2976Google Scholar

    [22]

    Voelkel R, Weible K J 2008 Optical Fabrication, Testing, & Metrology III Glasgow, Scotland, United Kingdom, September 2–5, 2008 p71020J

    [23]

    Oohashi K, Inoue H, Nomura T, Ono A, Tabata M, Suzuki H 2000 Photomask and Next Generation Lithography Mask Technology VII Kanagawa, Japan, April 12–13, 2000 p452

    [24]

    古德曼 J W 著 (陈家壁, 秦克诚, 曹其智 译) 2020 傅里叶光学导论(北京: 科学出版社) 第145— 151页

    Goodman J W (translated by Chen J B, Qin K C, Cao Q Z) 2020 Introduction to Fourier Optics (Beijing: Science Press) pp145–151

    [25]

    李丽, 韩学勤, 赵士伟, 包鸿音, 王兴宾 2014 激光与光电子学进展 51 011401

    Li L, Han X Q, Zhao S W, Bao H Y, Wang X B 2014 Laser Optoelectronics Prog. 51 011401

  • [1] 罗文, 张飞舟, 张建柱. 激光主动照明均匀性影响因素及其规律. 物理学报, 2022, 71(15): 154203. doi: 10.7498/aps.71.20220420
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [5] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [11] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [12] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 谢逸群, 郭 旗. 非局域克尔介质中空间光孤子的相互作用. 物理学报, 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
计量
  • 文章访问数:  1207
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-06-11
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回