搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性浴中惰性粒子形状对有效作用力的影响

宁鲁慧 张雪 杨明成 郑宁 刘鹏 彭毅

引用本文:
Citation:

活性浴中惰性粒子形状对有效作用力的影响

宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅

Effect of particle shape on effective interactions in active bath

Ning Lu-Hui, Zhang Xue, Yang Ming-Cheng, Zheng Ning, Liu Peng, Peng Yi
PDF
导出引用
  • 活性物质是典型的非平衡态系统,其组成单元能够利用自身存储的能量或者周围环境的能量实现自驱动。在活性系统中,物体间的受力情况直接影响其结构和动力学行为,因此深入了解物体间的有效作用力是理解活性物质一切复杂现象的基础。本文通过光镊显微镜实验分别研究了活性大肠杆菌溶液中惰性球形聚苯乙烯胶体粒子间和板状粒子间的有效作用力,发现球形粒子间有效作用力的性质一直是短程排斥力,而板状粒子间的有效作用力则为长程吸引力,这说明惰性粒子间的有效作用力受粒子形状的影响。惰性粒子间的有效作用力主要来源于两部分的贡献:细菌-惰性粒子间的直接碰撞,以及细菌运动产生的流场。我们在实验上通过对比粒子之间、粒子外侧细菌的浓度和取向有序性,发现球形粒子间的有效排斥力主要来源于细菌-粒子的直接碰撞,而板状粒子间的长程吸引力则主要源于细菌流场的贡献。本文通过光镊显微镜实验证明了惰性粒子间的有效作用力与惰性粒子的几何构型有关,为调控活性物质中的动态自组装提供了实验支撑。
    In active matter, the effective force between passive objects is crucial for their structure and dynamics, which is fundamental to understand the complex behaviors within active systems. Unlike equilibrium states, factors such as the surface configuration, size, and confinement strength significantly influence the effective forces between passive particles. Previous studies have shown that the shape of passive particles affects the aggregation of active particles, leading to different forces experienced by passive particles with different shapes. However, recently, Ning et al. discovered that a long-range attractive force between passive platelike particles, caused by the bacterial flow field instead of the direct bacterium-plate collisions in active bacterial suspensions. This raises an intriguing question: how does hydrodynamics differently affect the forces on passive particles of different shapes?
    In this work, we investigated the effective forces exerted on passive spherical and platelike particles immersed in bacterial suspensions by optical-tweezers experiments. The effective force between passive particles can be calculated by the formula, Feff=k<△d>/2, where <△d> represent the difference of the distance between passive particles in the bacterial bath compared to the solution without bacteria, k is the effective stiffness of optical traps.Feff>0 indicates a repulsive force between passive particles, and Feff<0 represents an effective attractive force between passive particles. Our results demonstrate that the passive spherical particles experience short-range repulsion, while platelike particles exhibit long-range attraction. This highlights the substantial impact of particle shape on their effective forces.
    The forces on passive particles are primarily attributed to two factors: direct bacterium-particle collisions and the bacterial flow field. Analysis of the bacterial concentration and orientation distribution around passive particles reveals that for spherical particles, the bacterial concentration is higher between particles than outside the particles, yet there is little difference in the orientation order of bacteria between inside and outside the particles. This suggests that the effective repulsion between spherical particles is mainly due to the direct bacterial collisions. Conversely, for platelike particles, the long-range attraction is primarily influenced by the bacterial flow field rather than direct collisions, which is evidenced by the higher bacterial density and orientation order inside the two plates compared to outside that. This study provides strong evidence that the effective force between passive particles is shape-dependent in active bath, and offers new insights into controlling active-directed assembly.
  • [1]

    Zhang H P, Be’er A, Florin E-L, and Swinney H L 2010 Proc. Natl. Acad. Sci. U.S.A. 107, 13626.

    [2]

    Karamouzas I, Skinner B, and Guy S J 2014 Phys. Rev. Lett. 113, 238701.

    [3]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, and Chaikin P M 2013 Science 339, 936.

    [4]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, and Speck T 2013 Phys. Rev. Lett. 110, 238301.

    [5]

    Petroff A P, Wu X L, and Libchaber A 2015 Phys. Rev. Lett. 114, 158102.

    [6]

    Bechinger C, Leonardo R Di, Löwen H, Reichhardt C, and Volpe G 2016 Rev. Mod. Phys. 88, 045006.

    [7]

    Needleman D, Dogic Z 2017 Nat. Rev. Mater. 2, 17048.

    [8]

    Gonzalez-Rodriguez D, Guevorkian K, Douezan S, and Brochart-Wyart F 2012 Science 338, 910.

    [9]

    Nelson B J, Kaliakatsos I K, Abbott J J 2010 Annu. Rev. Biomed. Eng. 12, 55.

    [10]

    Liu P, Ye S, Ye F, Chen K, and Yang M 2020 Phys. Rev. Lett. 124, 158001.

    [11]

    Ni R, Cohen Stuart M A, and Bolhuis P G 2015 Phys. Rev. Lett. 114, 018302.

    [12]

    Ray D, Reichhardt C, and Olson Reichhardt C J 2014 Phys. Rev. E 90, 013019.

    [13]

    Harder J, Mallory S A, Tung C, Valeriani C, and Cacciuto A 2014 J. Chem. Phys. 141, 194901.

    [14]

    Leite L R, Lucena D, Potiguar F Q, and Ferreira W P 2016 Phys. Rev. E 94, 062602.

    [15]

    Feng F, Lei T, and Zhao N 2021 Phys. Rev. E 103, 022604.

    [16]

    Paul S, Jayaram A, Narinder N, Speck T, and Bechinger C 2022 Phys. Rev. Lett. 129, 058001.

    [17]

    Ning L, Lou X, Ma Q, Yang Y, Luo N, Chen K, Meng F, Zhou X, Yang M, and Peng Y 2023 Phys. Rev. Lett. 131, 158301.

    [18]

    Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 5, 288.

    [19]

    Pesce G, Jones P H, Maragò O M, Volpe G 2020 Eur. Phys. J. Plus 135, 949.

    [20]

    Volpe G, Maragò O M, Rubinsztein-Dunlop H, Pesce G, Stilgoe A B, Volpe G, Tkachenko G, Truong V G, Chormaic S N, Kalantarifard F, Elahi P, Käll M, Callegari A, Marqués M I, Neves A A R, Moreira W L, Fontes A, Cesar C L, Saija R, Saidi A, Beck P, Eismann J S, Banzer P, Fernandes T, F D, Pedaci F, Warwick P Bowen W P, Vaippully R, Lokesh M, Roy B, Thalhammer-Thurner G, Ritsch-Marte M, García L P, Arzola A V, Castillo I P, Argun A, Muenker T M, Vos B E, Betz T, Cristiani I, Minzioni P, Reece P J, Wang F, McGloin D, Ndukaife J C, Quidant R, Roberts R P, Laplane C, Volz T, Gordon R, Hanstorp D, Marmolejo J T, Bruce G D, Dholakia K, Li T, Brzobohatý O, Simpson S H, Zemánek P, Ritort F, Roichman Y, Bobkova V, Wittkowski R, Denz C, Kumar G V P, Foti A, Donato M G, Gucciardi P G, Gardini L, Bianchi G, Kashchuk A V, Capitanio M, Paterson L, Jones P H, Berg-Sørensen K, Barooji Y F, Oddershede L B, Pouladian P, Preece D, Adiels C B, Luca A C D, Magazzù A, Ciriza D B, Iatì M A, and Jr G A S 2023 J. Phys. Photonics 5, 022501.

    [21]

    Bustamante C, Alexander L, Maciuba K, and Kaiser C M 2020 Annu. Rev. Biochem. 89, 443.

    [22]

    Baek Y, P. Solon A, Xu X, Nikola N, and Kafri Y 2018 Phys. Rev. Lett. 120, 058002.

    [23]

    Walter J M, Greenfield D, Bustamante C, and Liphardt J 2007 Proc. Natl. Acad. Sci. U.S.A. 104, 2408.

    [24]

    Peng Y, Liu Z, and Cheng X 2021 Sci. Adv. 7, eabd1240.

    [25]

    Hernandez C J and Mason T G 2007 J. Phys. Chem. C 111, 4477.

    [26]

    Zheng Z and Han Y 2010 J. Chem. Phys. 133, 124509.

    [27]

    Drescher K, Dunkel J, Cisneros L H, Ganguly S, and Goldstein R E 2011 Proc. Natl. Acad. Sci. U.S.A. 108, 10940.

    [28]

    Lauga1 E and R Powers T R 2009 Rep. Prog. Phys. 72 096601.

  • [1] 王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波. 基于低损光学相变和超透镜的可控多阱光镊. 物理学报, doi: 10.7498/aps.72.20221794
    [2] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, doi: 10.7498/aps.72.20230792
    [3] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, doi: 10.7498/aps.71.20212284
    [4] 高艺雯, 王影, 田文得, 陈康. 空间调制的驱动外场下活性聚合物的动力学行为. 物理学报, doi: 10.7498/aps.71.20221367
    [5] 仲颖, 施夏清. 自驱动杆状粒子在半柔性弹性环中的集体行为. 物理学报, doi: 10.7498/aps.69.20200561
    [6] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, doi: 10.7498/aps.67.20180460
    [7] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, doi: 10.7498/aps.65.188706
    [8] 陈雷鸣. 干活性物质的动力学理论. 物理学报, doi: 10.7498/aps.65.186401
    [9] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, doi: 10.7498/aps.63.178802
    [10] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, doi: 10.7498/aps.62.100701
    [11] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究. 物理学报, doi: 10.7498/aps.61.228702
    [12] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, doi: 10.7498/aps.61.210701
    [13] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, doi: 10.7498/aps.60.030301
    [14] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, doi: 10.7498/aps.58.6167
    [15] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, doi: 10.7498/aps.57.5506
    [16] 曾夏辉, 吴逢铁, 刘 岚. 干涉理论对bottle beam的描述. 物理学报, doi: 10.7498/aps.56.791
    [17] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, doi: 10.7498/aps.55.206
    [18] 张艳丽, 赵逸琼, 詹其文, 李永平. 高数值孔径聚焦三维光链的研究. 物理学报, doi: 10.7498/aps.55.1253
    [19] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, doi: 10.7498/aps.55.4557
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  69
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-26

/

返回文章
返回