搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeV重离子束辐照LiF引起的晶体内部结构改变

陈宇鹏 史路林 王瑜玉 程锐 杨杰 陈良文 范伟丽 董俊煜

引用本文:
Citation:

GeV重离子束辐照LiF引起的晶体内部结构改变

陈宇鹏, 史路林, 王瑜玉, 程锐, 杨杰, 陈良文, 范伟丽, 董俊煜

Internal structural changes in crystals induced by GeV heavy ion beam irradiation of LiF

Chen Yu-Peng, Shi Lu-Lin, Wang Yu-Yu, Cheng Rui, Yang Jie, Chen Liang-Wen, Fan Wei-Li, Dong Jun-Yu
PDF
导出引用
  • 高能强流重离子束入射到固体物质中,沿飞行路径的离子能量沉积密度将改变宏观靶物质的温度和压强等,并可能在高压高密条件下产生新的材料缺陷。本文报道了利用兰州重离子加速器装置HIRFL-CSR引出的能量为264 MeV/u 的Xe36+离子束,入射到LiF晶体靶物质中,在线测量了LiF的发射光谱;观测到沿离子路径的晶体颜色变化;通过解离方法取得了不同位置处的XRD(X-ray Diffraction)与XPS(X-ray photoelectron spectroscopy)结果,显示在Xe离子的布拉格峰区域出现了LiF3(LiF+F2)结构相,讨论了该新的结构缺陷的产生与重离子束能量沉积密度间可能的相关性,这为离子束驱动的高能量密度物理的能量沉积过程提供了一定参考。
    When high-energy heavy ions beam is incident into solid material, the energy deposition density along the ions flight path can change the macroscopic target temperature and pressure, and may create new material defects under such high-pressure and high-density conditions. To accurately control the extreme state in material generated by heavy ions beam, it is necessary to conduct detailed research on the energy deposition density of ions and figure out the new potential defects in matter. This paper reports the new experiment at the HIRFL-CSR at Lanzhou, where 264 MeV/u Xe36+ions beams are extracted to irradiate a LiF crystal target. The emission spectrum of the LiF was measured in-situ. Moreover, the changes in crystal color along ions path are observed (shown as Fig.1), and XRD (X-ray Diffraction) as well as XPS(X-ray photoelectron spectroscopy) are applied to predict the potential new phases at different positions of crystal through the target dissociation method. It is apparent that in No.3- front(the red line)a new phase around 52.6 degree is found in XRD result, which is believed as LiF3 (LiF+F2) structural phase and appear in the Bragg peak region of Xe ions in LiF. Furthermore, to verify this result, a similar experiment was done by using 430MeV/u 84Kr26+ions beam, and the stacked layered LiF target was analyzed after the irradiation. XPS result shows more complex defects aggregates in the Bragg peak region of Kr ions in LiF at room temperature. In previous study, such complex defects all generated under high temperature conditions. We figure out that these complex defects can be produced around the Bragg peak region of ions in LiF at room temperature, where a temporally high temperature and high pressure condition could be generated. This paper can provide some experimental evidences and references for the target material modification in high-energy density physics research driven by heavy ions beam.
  • [1]

    Kang W, Du Y, Cao S, Zhao H, Lei Y, Wang Y, He B, Sheng L, Song Y, Xiao G, Zhang Y, Li F, Cheng R, Wang Y, Zhang L, Zhao Z, Yang J, Zhao Q, Qi W, Chen Y, Ma B, Wang X, Hu Z, Liu W, Hoffmann D, Gao F, Su Y, Xu Z, Zhan W, Zhang Y, Wu D, Zhao X, Zhang X, Wan F, Qi X, Chen B, Zhang Z, Cao L, Deng Z, Ren J, Huang W, Yang J, Zhou X, Zhou Z, Li J, Zhang S, Zhou W, Yang L, Zhao Y, Tang C, Li J 2020 Sci. Sin. Phys. Mech. Astron. 50 112004

    [2]

    Yang J, Chen Y, Shen G, Zhao Q, Zhang Z, Zhang S, Zhan W, Ma X, Wang Y, Zhao H, Chen L, Lin P, Lei Y, Zhang Y, Yang L, Cheng R, Xiao G, Yang J 2020 Sci. Sin. Phys. Mech. Astron. 50 112011

    [3]

    Matsubayashi M, Faenov A, Pikuz T, Fukuda Y, Kato Y, Yasuda R, Iikura H, Nojima T, Sakai T 2011 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 651 90

    [4]

    Perez A, Davenas J, Dupuy C H S 1976 Nucl. Instrum. Methods 132 219

    [5]

    Wangts Z G, Dufourtt C, Paumiertt E, Toulemoude M

    [6]

    Perez A, Balanzat E, Dural J 1990 Phys. Rev. B 41 3943

    [7]

    Trautmann C, Toulemonde M, Schwartz K, Costantini J M, Mu A 2000

    [8]

    El-Said A S, Cranney M, Ishikawa N, Iwase A, Neumann R, Schwartz K, Toulemonde M, Trautmann C 2004 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 218 492

    [9]

    Müller A, Neumann R, Schwartz K, Trautmann C 1998 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 146 393

    [10]

    Toulemonde M, Assmann W, Trautmann C, Grüner F 2002 Phys. Rev. Lett. 88

    [11]

    Trautmann C, Schwartz K, Geiss O 1998 J. Appl. Phys. 83 3560

    [12]

    Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M 1998 Phys. Rev. B 58 11232

    [13]

    Davidson A T, Schwartz K, Comins J D, Kozakiewicz A G, Toulemonde M, Trautmann C 2002 Phys. Rev. B 66 214102

    [14]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104

    [15]

    Pikuz T, Faenov A, Fukuda Y, Kando M, Bolton P, Mitrofanov A, Vinogradov A, Nagasono M, Ohashi H, Yabashi M, Tono K, Senba Y, Togashi T, Ishikawa T 2012 Opt. Express 20 3424

    [16]

    Lushchik A, Lushchik Ch, Schwartz K, Vasil’chenko E, Papaleo R, Sorokin M, Volkov A E, Neumann R, Trautmann C 2007 Phys. Rev. B 76 054114

    [17]

    Thevenard P, Guiraud G, Dupuy C H S, Delaunay B 1977 Radiat. Eff. 32 83

    [18]

    KNUTSONt D, Bray P J

    [19]

    Dauletbekova A, Schwartz K, Sorokin M V, Baizhumanov M, Akilbekov A, Zdorovets M 2015 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 359 53

    [20]

    Ditter M, Becher M, Orth S, Schwartz K, Trautmann C, Fujara F 2019 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 441 70

  • [1] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, doi: 10.7498/aps.69.20201006
    [2] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响. 物理学报, doi: 10.7498/aps.63.200201
    [3] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, doi: 10.7498/aps.63.246103
    [4] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, doi: 10.7498/aps.61.064201
    [5] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理. 物理学报, doi: 10.7498/aps.61.078105
    [6] 濮春英, 刘廷禹, 刘长捷, 白晓明, 李春萍, 佘辉. 碘化铯晶体中电子型色心的电子结构研究. 物理学报, doi: 10.7498/aps.59.453
    [7] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, doi: 10.7498/aps.57.5095
    [8] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体. 物理学报, doi: 10.7498/aps.56.916
    [9] 邹 军, 黄涛华, 王 军, 张连翰, 周圣明, 徐 军. Ti: LiAlO2新型晶体的结构分析. 物理学报, doi: 10.7498/aps.55.3536
    [10] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型. 物理学报, doi: 10.7498/aps.54.863
    [11] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究. 物理学报, doi: 10.7498/aps.54.1702
    [12] 白 龙, 翁甲强, 方锦清, 罗晓曙. 强流离子束离子径向密度分布的模拟研究. 物理学报, doi: 10.7498/aps.53.4126
    [13] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, doi: 10.7498/aps.53.1935
    [14] 高祀建, 欧阳世翕. γ射线辐照对电熔石英玻璃介电性质的影响. 物理学报, doi: 10.7498/aps.52.1292
    [15] 李 玲, 李伯臧. 双动边界一维空腔中的能量密度. 物理学报, doi: 10.7498/aps.52.2762
    [16] 冯锡淇, 林奇生, 满振勇, 廖晶莹, 胡关钦. 钨酸铅晶体的本征色心和辐照诱导色心. 物理学报, doi: 10.7498/aps.51.315
    [17] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响. 物理学报, doi: 10.7498/aps.50.1324
    [18] 唐立家, 蔡希洁, 林尊琪. “神光Ⅱ”主放大器中的波形控制. 物理学报, doi: 10.7498/aps.50.1075
    [19] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽. 物理学报, doi: 10.7498/aps.41.408
    [20] 郑立行, 阮永丰, 郭绍章, 万良风, 李浩. LiF晶体F3+色心的实验研究. 物理学报, doi: 10.7498/aps.35.1148
计量
  • 文章访问数:  45
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-28

/

返回文章
返回