搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响

江翠 李家锐 亓迪 张莲莲

引用本文:
Citation:

具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响

江翠, 李家锐, 亓迪, 张莲莲

Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene

Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian
PDF
HTML
导出引用
  • 本文通过T-型石墨烯结构的条带两侧分别施加单层或者双层具有宇称-时间(parity-time, PT)对称性的虚势能, 考察了非厄米机制对能谱和边缘态的调控作用. 结果发现, 当对条带最外侧单层格点施加虚势能时, 边缘态的能量出现虚部, 并且从局域在系统两侧变为一侧. 而拓扑平庸区出现PT对称相转变. 当虚势能达到临界值时, 体态的能隙中会有新的虚能边缘态. 另一方面, 当施加双层虚势能时, 体系中会出现两种不同的边缘态. 一种是出现在顶带和底带、局域在系统一侧的边缘态, 另一种是出现在第2条和第3条能带中间、局域性相对较弱的边缘态, 且不会进入能隙中. 本工作有助于理解PT对称的边缘虚势能对T-型石墨烯结构物性的调控作用.
    This paper investigates the regulatory effect of non-Hermitian mechanisms on energy spectra and edge states by applying a single- or double-layer imaginary potential with parity-time (PT) symmetry to both sides of the T-graphene ribbon. The findings indicate that the type of imaginary potential applied has a significant modulation effect on the energy band structure and localization of the system. Specifically, when an imaginary potential is applied to the outermost monolayer lattice point of the ribbon, the energy of the edge state appears in the imaginary part. For its probability density distribution, its locality changes from both-sided to one-sided locality, and becomes stronger with the increase of imaginary potential. Additionally, the PT symmetry phase transition occurs in the topologically trivial region. Notably, as the imaginary potential reaches a critical value, new imaginary-energy edge state emerges within the bulk state energy gap and also shows the phenomenon that the localization is on one side of the system. Furthermore, when double-layer imaginary potentials are applied, two different edge states will appear in the system. The first type appears in the top band and the bottom band, localized on one side of the system. The second type emerges in the middle of the second energy band and the third energy band, displaying relatively weak localization and not penetrating the energy gap. This work contributes to understanding the regulatory effect of the edge imaginary potential of PT symmetry on the physical properties of T-graphene structures.
      通信作者: 江翠, jlsdjc@163.com
    • 基金项目: 辽宁省自然科学基金(批准号: 2023-MSLH-218)和国家自然科学基金(批准号: 11905027)资助的课题.
      Corresponding author: Jiang Cui, jlsdjc@163.com
    • Funds: Project supported by the Natural Science Foundation of Liaoning province, China (Grant No. 2023-MSLH-218) and the National Natural Science Foundation of China (Grant No. 11905027).
    [1]

    Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833Google Scholar

    [2]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [3]

    Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Novoselov K, Fal'ko V, Colombo L, Gellert P R, Schwab M G, Kin K 2012 Nature 490 192Google Scholar

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102Google Scholar

    [8]

    Liu F, Katsunori W 2017 Phys. Rev. Lett. 118 076803Google Scholar

    [9]

    郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印 2022 物理学报 71 070201Google Scholar

    Guo S J, Li Y Z, Li T Z, Fan X Y, Q C Y 2022 Acta Phys. Sin. 71 070201Google Scholar

    [10]

    Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M, Sengstock K 2011 Nat. Phys. 7 434Google Scholar

    [11]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305Google Scholar

    [12]

    祝可嘉, 郭志伟, 陈鸿 2022 物理学报 71 131101Google Scholar

    Zhu K J, Guo Z W, Chen H 2022 Acta Phys. Sin. 71 131101Google Scholar

    [13]

    Li J R, Jiang C, Su H, Qi D, Zhang L L, Gong W J 2024 Front. Phys. 19 33204Google Scholar

    [14]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [15]

    Li J R, Zhang L L, Zhao C H, Zhang S F, Zhu Y L, Gong W J 2024 Phys. Rev. B 109 165407Google Scholar

    [16]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [17]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [18]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [19]

    Bender C M 2007 Rep. Progr. Phys. 70 947Google Scholar

    [20]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [21]

    Jin L 2017 Phys. Rev. A 96 032103Google Scholar

    [22]

    李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江 2022 物理学报 71 177302Google Scholar

    Li J R, Wang Z A, Xu T T, Zhang L L, Gong W J 2022 Acta Phys. Sin. 71 177302Google Scholar

    [23]

    Wang X H, Liu T T, Xiong Y, Tong P Q 2015 Phys. Rev. A 92 012116Google Scholar

    [24]

    Zhao C H, Li J R, Jiang C, Zhang L L, Gong W J 2024 Phys. Rev. A 109 042203Google Scholar

    [25]

    Wu H C, Jin L, Song Z 2019 Phys. Rev. B 100 155117Google Scholar

    [26]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [27]

    Zhen B, Hsu C W, Igarashi Y C, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [28]

    Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101Google Scholar

    [29]

    Yang Y, Yang J, Li X B, Zhao Y 2018 Phys. Lett. A 382 723Google Scholar

    [30]

    Kang Y T, Lu C, Yang F, Yao D X 2019 Phys. Rev. B 99 184506Google Scholar

    [31]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [32]

    Fang C, Gilbert M J, Bernevig B A 2012 Phys. Rev. B 86 115112Google Scholar

    [33]

    Yan L, Zhang D, Wang X J, Yan J Y 2023 New J. Phys. 25 043020Google Scholar

    [34]

    刘佳琳, 庞婷方, 杨孝森, 王正岭 2022 物理学报 71 227402Google Scholar

    Liu J L, Pang T F, Yang X S, Wang Z L 2022 Acta Phys. Sin. 71 227402Google Scholar

    [35]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

  • 图 1  (a)二维T-型石墨烯模型; (b) x方向为周期性边界条件, y方向为开放性边界条件时T-型石墨烯一维条带模型; (c) y方向为周期性边界条件, x方向为开放性边界条件时T-型石墨烯一维条带模型, 蓝色、紫色、黄色和红色分别表示4种不同的子晶格A, B, C和D, 绿色和黑色实线分别表示胞内和胞间的跃迁, 粉色表示一维条带中新生成含$ {k}_{x} $的胞内跃迁, 浅蓝色表示一维条带中新生成含$ {k}_{y} $的胞内跃迁

    Fig. 1.  (a) The schematic of 2D T-graphene model; (b) one-dimensional ribbon model of T-graphene with periodic boundary conditions in the x-direction and open boundary conditions in the y-direction; (c) one-dimensional ribbon model of T-graphene with periodic boundary conditions in the y-direction and open boundary conditions in the x-direction, blue, purple, yellow, and red represent four different sublattices A, B, C and D, while green and black solid lines represent intracell and intercell hopping, the pink line represents newly generated intracell hopping contains $ {k}_{x} $, the light blue line represents newly generated intracell hopping contains $ {k}_{y} $.

    图 2  厄米情况下的T-型石墨烯能带结构图 (a)—(c)三维能带结构图和高对称点的能带图, 参数分别取为 (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $

    Fig. 2.  The energy band spectra of Hermitian T-graphene model: (a)–(c) Three-dimensional energy band diagrams and energy band diagrams with high symmetry points, the parameters are set as (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $.

    图 3  第1种条带结构的能带图, 参数分别为 (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $; 第1种条带边缘态的概率密度谱, 参数为(c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (d) $ {t}_{1} = 1 $, $ {t}_{2} = 2 $, $ {k}_{x} = 0 $; (e) 在$ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $时第2种条带结构的能带图; 第2种一维条带本征态的概率密度谱, 参数为(f) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (g) $ {t}_{1} = 1 $, $ {t}_{2} = 2 $, $ {k}_{x} = 0 $

    Fig. 3.  Energy band spectra of the first ribbon structure with parameters (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $; probability density spectrum of the edge state in the first ribbon structure at $ {k}_{x} = 0 $.The parameters are set as (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, (d) $ {t}_{1} = 1 $, $ {t}_{2} = 2 $; (e) energy band spectrum of the second ribbon structure at $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $; probability density spectrum of the edge state in the second ribbon structure at (f) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (g) $ {t}_{1} = 1 $, $ {t}_{2} = 2 $, $ {k}_{x} = 0 $.

    图 4  单层边缘虚势能影响下的T-型石墨烯能带 (a), (b)为本征能量与虚势能强度$ {\mathrm{\gamma }} $的关系结果, 参数取值分别为 (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $; (c), (d)为本征能量与x方向波矢量$ {k}_{x} $的关系结果, 其中(c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {\mathrm{\gamma }} = 0.5 $; (d) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {\mathrm{\gamma }} = 1.5 $, 蓝色代表的是体带部分, 红色为体系中原本存在的边缘态, 绿色为由虚势能诱导的新孤立态

    Fig. 4.  The band structure of the ribbon T-graphene with single layer edge imagianry potential: (a), (b) The eigenvalue spectrum of the ribbon verses $ \gamma $ with (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $; (c), (d) the band structure with (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {\mathrm{\gamma }} = 0.5 $; (d) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {\mathrm{\gamma }} = 1.5 $, blue represents the bulk states, red represents the edge state that originally existed in the system, and green represents a new isolated state induced by imaginary potential.

    图 5  拓扑平庸区中单层边缘虚势能影响下的T-型石墨烯能带 (a)—(c)为本征能量与虚势能强度$ \gamma $的关系结果, 参数取值分别为 (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 0.5 $; (b) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 1 $; (c) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 1.5 $

    Fig. 5.  The band structure of the ribbon T-graphene with different single layer edge imagianry potential in topologically trivial region with (a) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 0.5 $; (b) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 1 $; (c) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {\mathrm{\gamma }} = 1.5 $.

    图 6  单层虚势能影响下的关于胞内跃迁强度的能谱图实部与虚部 (a) $ \gamma = 1 $; (b) $ \gamma = 2 $, 其他参数$ {t}_{2} = 1 $, $ {k}_{x} = 0 $

    Fig. 6.  The eigenvalue spectrum of the ribbon versus $ {t}_{1} $ with different $ \gamma $: (a) $ \gamma = 1; $(b) $ \gamma = 2 $, other parameters are $ {t}_{2} = 1,~ {k}_{x} = 0 $.

    图 7  单层边缘虚势能影响下体系的本征值和概率密度密度 (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 0.5 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 3.5 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $, $ \gamma = 3.5 $; (d) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {k}_{x} = 0.4{\mathrm{\pi }} $, $ \gamma = 3.5 $

    Fig. 7.  Eigenvalues and probability density densities of the system under the influence of single-layer edge imaginary potential: (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 0.5 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 3.5 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $, $ \gamma = 3.5 $; (d) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $, $ \gamma = 3.5 $.

    图 8  双层边缘虚势能影响下的T-型石墨烯能带 (a), (b)为体系本征值随着虚势能强度$ \gamma $变化的实部和虚部, 参数取值分别为 (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0.4{\mathrm{\pi }} $; (c), (d)为一维条带的能带结果, 参数取值为$ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $,$ \gamma = 2 $; (d) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ \gamma = 2 $

    Fig. 8.  The band structure of the ribbon T-graphene with double layer edge imaginary potential: The real and imaginary parts of the system eigenvalues varying with the strength of the imaginary potential $ \gamma $, the parameters are (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $; the band structure with (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {\mathrm{\gamma }} = 2 $; (d) $ {t}_{1} = 1.2 $, $ {t}_{2} = 1 $, $ \gamma = 2 $.

    图 9  双层边缘虚势能影响下体系的本征值和概率密度谱, 参数取值分别为 (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 0.5 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 3.5 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $, $ \gamma = 3.5 $

    Fig. 9.  Eigenvalues and probability density densities of the system under the influence of double-layer edge imaginary potential, the parameters are set as (a) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 0.5 $; (b) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = 0 $, $ \gamma = 3.5 $; (c) $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ {k}_{x} = $0.4$ {\mathrm{\pi }} $, $ \gamma = 3.5 $.

    图 10  完全开放性边界条件下的本征值谱和本征态的概率密度谱, 参数取为$ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ \gamma = 3.5 $

    Fig. 10.  Eigenvalues and probability density densities spectra of the edge states in open boundary conditions with $ {t}_{1} = 1 $, $ {t}_{2} = 1.2 $, $ \gamma = 3.5 $.

  • [1]

    Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833Google Scholar

    [2]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [3]

    Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Novoselov K, Fal'ko V, Colombo L, Gellert P R, Schwab M G, Kin K 2012 Nature 490 192Google Scholar

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102Google Scholar

    [8]

    Liu F, Katsunori W 2017 Phys. Rev. Lett. 118 076803Google Scholar

    [9]

    郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印 2022 物理学报 71 070201Google Scholar

    Guo S J, Li Y Z, Li T Z, Fan X Y, Q C Y 2022 Acta Phys. Sin. 71 070201Google Scholar

    [10]

    Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M, Sengstock K 2011 Nat. Phys. 7 434Google Scholar

    [11]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305Google Scholar

    [12]

    祝可嘉, 郭志伟, 陈鸿 2022 物理学报 71 131101Google Scholar

    Zhu K J, Guo Z W, Chen H 2022 Acta Phys. Sin. 71 131101Google Scholar

    [13]

    Li J R, Jiang C, Su H, Qi D, Zhang L L, Gong W J 2024 Front. Phys. 19 33204Google Scholar

    [14]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [15]

    Li J R, Zhang L L, Zhao C H, Zhang S F, Zhu Y L, Gong W J 2024 Phys. Rev. B 109 165407Google Scholar

    [16]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [17]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [18]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [19]

    Bender C M 2007 Rep. Progr. Phys. 70 947Google Scholar

    [20]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [21]

    Jin L 2017 Phys. Rev. A 96 032103Google Scholar

    [22]

    李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江 2022 物理学报 71 177302Google Scholar

    Li J R, Wang Z A, Xu T T, Zhang L L, Gong W J 2022 Acta Phys. Sin. 71 177302Google Scholar

    [23]

    Wang X H, Liu T T, Xiong Y, Tong P Q 2015 Phys. Rev. A 92 012116Google Scholar

    [24]

    Zhao C H, Li J R, Jiang C, Zhang L L, Gong W J 2024 Phys. Rev. A 109 042203Google Scholar

    [25]

    Wu H C, Jin L, Song Z 2019 Phys. Rev. B 100 155117Google Scholar

    [26]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [27]

    Zhen B, Hsu C W, Igarashi Y C, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljačić M 2015 Nature 525 354Google Scholar

    [28]

    Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101Google Scholar

    [29]

    Yang Y, Yang J, Li X B, Zhao Y 2018 Phys. Lett. A 382 723Google Scholar

    [30]

    Kang Y T, Lu C, Yang F, Yao D X 2019 Phys. Rev. B 99 184506Google Scholar

    [31]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [32]

    Fang C, Gilbert M J, Bernevig B A 2012 Phys. Rev. B 86 115112Google Scholar

    [33]

    Yan L, Zhang D, Wang X J, Yan J Y 2023 New J. Phys. 25 043020Google Scholar

    [34]

    刘佳琳, 庞婷方, 杨孝森, 王正岭 2022 物理学报 71 227402Google Scholar

    Liu J L, Pang T F, Yang X S, Wang Z L 2022 Acta Phys. Sin. 71 227402Google Scholar

    [35]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

  • [1] 张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋. 周期调制四通道光学波导的宇称-时间对称特性调控和动力学研究. 物理学报, 2024, 73(16): 164201. doi: 10.7498/aps.73.20240690
    [2] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [3] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [4] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [5] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [6] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [7] 张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究. 物理学报, 2021, 70(10): 109601. doi: 10.7498/aps.70.20201662
    [8] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [9] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [10] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [11] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [12] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [13] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [14] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [15] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [16] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [17] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究. 物理学报, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [18] 康 帅, 刘 强, 钟振祥, 张现周, 史庭云. 氢原子Rydberg态抗磁谱的高阶B-spline基组计算. 物理学报, 2006, 55(7): 3380-3385. doi: 10.7498/aps.55.3380
    [19] 孟庆国, 蔡庆东, 李存标. 能谱在解释湍流能量级串中值得注意的一个问题. 物理学报, 2004, 53(9): 3090-3093. doi: 10.7498/aps.53.3090
    [20] 张红梅, 马东平, 刘德. LiNbO_3:Ni~(2+)的常压能谱和g因子. 物理学报, 2002, 51(7): 1554-1558. doi: 10.7498/aps.51.1554
计量
  • 文章访问数:  359
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-08-14
  • 上网日期:  2024-09-14
  • 刊出日期:  2024-10-20

/

返回文章
返回