搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层SnS场效应晶体管的第一性原理研究

郭颖 潘峰 姚彬彬 孟豪 吕劲

引用本文:
Citation:

单层SnS场效应晶体管的第一性原理研究

郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲

High-performance Sub-5nm Monolayer Tin Sulfide (SnS) Field-effect Transistors: a First principles Study

Guo Ying, Pan Feng, Yao Binbin, Meng Hao, Lu Jin
PDF
导出引用
  • 基于硅基材料的逻辑器件由于其短沟道效应,使摩尔定律失效,二维半导体材料被认为是继续缩小晶体管尺寸以生产更多摩尔电子器件的潜在沟道材料。最近在实验上突破了技术瓶颈的限制,实现了二维场效应晶体管突破亚1 nm沟道极限,并且表现出优异的器件性能(Wu F, etc. 2022 Nature 603 259)。这极大地鼓舞了在理论上进一步探索二维器件的性能。二维SnS具有高的载流子迁移率和各向异性的电子性能,且材料性能环境稳定。本文应用第一性原理研究了亚5 nm SnS 场效应晶体管的量子输运特性,鉴于SnS的各向异性,文章将器件沿单层SnS的armchair和zigzag两个方向进行构造,发现p型zigzag方向的器件性能优于其他类型(包括n型、p型的armchair方向和n型的zigzag方向)。p型zigzag方向器件的开态电流在栅长缩短到1 nm也能满足国际半导体技术路线图的高性能(HP)器件要求,其值高达1934 μA/μm。据我们所知,这是目前所报道的1 nm栅长上性能最好的器件材料。
    Presently Si-based field-effect transistors (FET) are approaching their physical limit and challenging Moore's law for their short-channel effect, and further scaling their gate length down to the sub-10 nm region is becoming extremely difficult. Two-dimensional (2D) layered semiconductors with atom-scale uniform thicknesses and absence of dangling bonds on the interface are considered as potential channel materials to support further miniaturization and integrated electronics. Wu F, et al. (2022 Nature 603 259) have successfully fabricated a FET with gate lengths below 1 nm using atomically thin molybdenum disulfide with exceptional device performance. This breakthrough has greatly encouraged further theoretical predictions regarding the performance of 2D devices. Additionally, 2D SnS exhibits high carrier mobility, anisotropic electronic properties, and stabilized in ambient condition conducive to advanced applications in 2D semiconductor technology. Herein, we explore the quantum transport properties of sub-5 nm monolayer (ML) SnS FET using first-principles quantum transport simulation. Considering the anisotropic electronic SnS, the double-gated-two-probe device model is constructed along the armchair and zigzag directions of ML SnS. After test five kinds of doping concentrations, a doping concentration of 5×1013 cm-2 is the best one for SnS FET. We also used the underlap (UL) with range of 0, 2, and 4 nm to improve the device performance. On-state current (Ion) is an important parameter for evaluating the transition speed of a logic device. A higher Ion of a device can help to increase the switching speed of high-performance (HP) servers. The main conclusions are as follows.
    1) Ion of the n-type 2 nm (UL=4 armchair), 3 nm (UL=2), 4 nm (UL=3), 5 nm (UL=0) and the p-type 1 nm (UL=2 zigzag), 2 nm (UL=2 zigzag), 3 nm (UL=2,4 zigzag), 4 nm (UL=2,4 zigzag), and 5 nm (UL=0, armchair/zigzag) gate-length devices can meet the standards for HP applications for the next decade in the International Technology Roadmap for semiconductors (ITRS, 2013 version).
    2) Ion of the n-type device along the armchair direction (31-2369μA/μm) are larger than that in the zigzag direction (4.04-1943μA/μm), while p-type along the zigzag direction (545-4119μA/μm) are larger than that in the armchair direction (0.7-924μA/μm). Therefore, the p-type ML GeSe MOSFETs have a predominantly anisotropic current.
    3) Ion of the p-type 3 nm gate-length (UL=0) device along the zigzag direction has the highest valued 4119 μA/μm is 2.93 times larger than that in the same gate-length UL=2 (1407μA/μm). Hence, an overlong UL will weaken the performance of the device because the gate of the device cannot well control the UL region. Thus, a suitable length of UL for FET is very important.
    4) Remarkably, Ion of the p-type devices (zigzag), even at a 1 nm gate-length, can fulfill the requirements of HP applications for the next decade in the ITRS, with a value as high as 1934 μA/μm. To our knowledge, this is the best-performing device material reported at 1 nm gate length.
    5) Subthreshold swing (SS) evaluates the control ability of the gate in the subthreshold region. The better the gate control, the smaller SS the device has. The limit of SS for traditional FETs is 60 mV/dec (at room temperature). Values of SS for ML SnS FET alone zigzag direction are less than those along the armchair direction because the leakage current is influenced by the effective mass.
  • [1]

    Cao W, Bu H, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501

    [2]

    Liu Y, Duan X D, Shin H-J, Park S, Huang Y, Duan X F 2021 Nature 591 43

    [3]

    Wang Y Y, Liu S Q, Li Q W, Quhe R, Yang C, Guo Y, Zhang X Y, Pan Y Y, Li J S, Zhang H, Xu L, Shi B W, Tang H, Li Y, Yang J, Zhang Z Y, Xiao L, Pan F, Lu J 2021 Rep. Prog. Phys. 84 056501

    [4]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276

    [5]

    https://irds.ieee.org/editions/2022

    [6]

    Sujay B. Desai, Surabhi R. Madhvapathy, Angada B. Sachid, Juan Pablo Llinas, Qingxiao Wang, Geun Ho Ahn, Gregory Pitner, Moon J. Kim, Jeffrey Bokor, Chenming Hu, H.-S. Philip Wong, Ali Javey 2016 Science 354 99

    [7]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y, Ren T-L 2022 Nature 603 259

    [8]

    Jiang J, Xu L, Qiu C, Peng L-M 2023 Nature 616 470

    [9]

    Xin C, Zheng J, Su Y, Li S, Zhang B, Feng Y, Pan F 2016 J. Phys. Chem. C 120 22663

    [10]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2022 Adv. Sci. 10 2201842

    [11]

    Li S, Xiao W, Pan Y, Jie J, Xin C, Zheng J, Lu J, Pan F 2018 J. Phys. Chem. C 122 12322

    [12]

    Chang Y-R, Nishimura T, Taniguchi T, Watanabe K, Nagashio K 2022 ACS Appl. Mater. Interfaces 14 19928

    [13]

    Sucharitakul S, Rajesh Kumar U, Sankar R, Chou F C, Chen Y T, Wang C, He C, He R, Gao X P 2016 Nanoscale 8 19050

    [14]

    Dragoman M, Dinescu A, Avram A, Dragoman D, Vulpe S, Aldrigo M, Braniste T, Suman V, Rusu E, Tiginyanu I 2022 Nanotechnology 33 405207

    [15]

    Pandit A, Hamad B 2021 Applied Surface Science 538 147911

    [16]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434

    [17]

    Zhao P, Kiriya D, Azcatl A, Zhang C, Tosun M, Liu Y-S, Hettick M, Kang J S, McDonnell S, KC S, Guo J, Cho K, Wallace R M, Javey A 2014 ACS Nano 8 10808

    [18]

    Fathipour S, Pandey P, Fullerton-Shirey S, Seabaugh A 2016 J. Appl. Phys. 120 234902

    [19]

    Quhe R, Li Q, Zhang Q, Wang Y, Zhang H, Li J, Zhang X, Chen D, Liu K, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Applied 10 024022

    [20]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [21]

    Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M, Lodha S 2014 Appl. Phys. Lett. 105 113505

    [22]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696

    [23]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H-J, Park S, Yoo W J 2017 ACS Nano 11 1588-1596

    [24]

    Pan Y, Wang Y, Ye M, Quhe R, Zhong H, Song Z, Peng X, Yu D, Yang J, Shi J, Lu J 2016 Chem. Mater. 28 2100

    [25]

    Pan Y, Dan Y, Wang Y, Ye M, Zhang H, Quhe R, Zhang X, Li J, Guo W, Yang L, Lu J 2017 ACS Appl. Mater. Interfaces 9 12694

    [26]

    Zhang X, Pan Y, Ye M, Quhe R, Wang Y, Guo Y, Zhang H, Dan Y, Song Z, Li J, Yang J, Guo W, Lu J 2017 Nano Res. 11 707

    [27]

    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A 2014 Nano Lett. 14 5733

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033

    [29]

    Guo Y, Pan F, Zhao G, Ren Y, Yao B, Li H, Lu J 2020 Nanoscale 12 15443

    [30]

    Guo Y, Zhao G, Pan F, Quhe R, Lu J 2022 J. Electron. Mater. 51 4824

  • [1] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, doi: 10.7498/aps.72.20230483
    [2] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, doi: 10.7498/aps.70.20210014
    [3] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [4] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, doi: 10.7498/aps.64.127303
    [5] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, doi: 10.7498/aps.63.197302
    [6] 赵晓辉, 蔡理, 张鹏. 一种碳纳米管场效应管的HSPICE模型. 物理学报, doi: 10.7498/aps.62.130506
    [7] 赵晓辉, 蔡理, 张鹏. 声子散射下碳纳米管场效应管建模方法研究. 物理学报, doi: 10.7498/aps.62.100301
    [8] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, doi: 10.7498/aps.61.177202
    [9] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, doi: 10.7498/aps.61.107803
    [10] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, doi: 10.7498/aps.61.166101
    [11] 周海亮, 池雅庆, 张民选, 方粮. 基于梯度掺杂策略的碳纳米管场效应管性能优化. 物理学报, doi: 10.7498/aps.59.8104
    [12] 赵起迪, 张振华. 低偏压下单层碳纳米管的输运特征. 物理学报, doi: 10.7498/aps.59.8098
    [13] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作. 物理学报, doi: 10.7498/aps.58.6772
    [14] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, doi: 10.7498/aps.57.5887
    [15] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟. 物理学报, doi: 10.7498/aps.57.7052
    [16] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, doi: 10.7498/aps.56.1054
    [17] 徐章程, 贾国治, 孙 亮, 姚江宏, 许京军, J. M. Hvam, 王占国. 亚单层InGaAs量子点-量子阱异质结构的时间分辨光致发光谱. 物理学报, doi: 10.7498/aps.54.5367
    [18] 杨林安, 张义门, 于春利, 张玉明. SiC功率金属-半导体场效应管的陷阱效应模型. 物理学报, doi: 10.7498/aps.52.302
    [19] 李宏伟, 王太宏. InAs自组装量子点GaAs肖特基二极管中的电流输运特性. 物理学报, doi: 10.7498/aps.50.262
    [20] 顾永建. 压缩真空态下介观RLC电路中电荷和电流的量子涨落. 物理学报, doi: 10.7498/aps.49.965
计量
  • 文章访问数:  58
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-12

/

返回文章
返回