搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步

贾美美 曹佳伟 白明明

引用本文:
Citation:

新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步

贾美美, 曹佳伟, 白明明

Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron

Jia Mei-Mei, Cao Jia-Wei, Bai Ming-Ming
PDF
HTML
导出引用
  • 首先提出一种新型局部有源忆阻器, 并分析该忆阻器的频率特性、局部有源性及非易失性. 然后将新型局部有源忆阻器引入二维Hindmarsh-Rose神经元和二维FitzHugh-Nagumo神经元, 构建新型忆阻耦合异质神经元模型. 在数值仿真中, 通过改变耦合强度, 发现该模型具有周期尖峰放电模式、混沌尖峰放电模式、周期簇发放电模式及随机簇发放电模式. 最后基于Lyapunov稳定性理论和预定义时间稳定性理论, 提出一种新型预定义时间同步策略, 并将该策略应用于新型忆阻耦合异质神经元的混沌同步中. 结果表明, 与有限时间同步策略、固定时间同步策略和传统预定义时间同步策略相比, 新型预定义时间同步策略的实际收敛时间最小. 研究新型忆阻耦合异质神经元的放电模式和混沌同步有助于探索大脑的神经功能, 并在神经信号处理及保密通信领域中具有重要意义.
    The processing and transmission of biological neural information are realized via firing activities of neurons in different regions of brain. Memristors are regarded as ideal devices for emulating biological synapses because of their nanoscale size, non-volatility and synapse-like plasticity. Hence, investigating firing modes of memristor-coupled heterogeneous neurons is significant. This work focuses on modelling, firing modes and chaos synchronization of a memristor-coupled heterogeneous neuron. First, a novel locally active memristor is proposed, and its frequency characteristics, local activity, and non-volatility are analyzed. Then, the novel locally active memristor is introduced into the two-dimensional HR neuron and the two-dimensional FHN neuron to construct a novel memristor-coupled heterogeneous neuron model. In numerical simulations, by changing the coupling strength, it is found that the model exhibits the periodic spike firing mode, the chaotic spike firing mode, the periodic burst firing mode, and the random burst firing mode. Besides, the dynamic behavior of the novel memristor-coupled heterogeneous neuron can switch between periodic behavior and chaotic behavior by changing the initial state. Finally, based on the Lyapunov stability theory and the predefined-time stability theory, a novel predefined-time synchronization strategy is proposed and used to realize the chaos synchronization of the novel memristor-coupled heterogeneous neuron. The results show that compared with a finite-time synchronization strategy, a fixed-time synchronization strategy and a traditional predefined-time synchronization strategy, the novel predefined-time synchronization strategy has a short actual convergence time. Studying the firing modes and chaotic synchronization of the novel memristor-coupled heterogeneous neuron can help explore the neural functions of the brain and is also important in processing the neural signal and secure communication fields.
      通信作者: 贾美美, meimeijia14@163.com
    • 基金项目: 内蒙古自治区直属高校基本科研业务费(批准号: JY20220181)和内蒙古自治区自然科学基金(批准号: 2024MS06006)资助的课题.
      Corresponding author: Jia Mei-Mei, meimeijia14@163.com
    • Funds: Project supported by the Basic Scientific Research Expenses Program of Universities of Inner Mongolia Autonomous Region, China (Grant No. JY20220181) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2024MS06006).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821Google Scholar

    [2]

    Syed Ali M, Stamov G, Stamova I, Ibrahim T F, Dawood A A, Osman Birkea F M 2023 Mathematics 11 4248Google Scholar

    [3]

    Zhang J R, Lu J G, Jin X C, Yang X Y 2023 Neural Networks 167 680Google Scholar

    [4]

    Wu X, Liu S T, Wang H Y, Wang Y 2023 ISA Trans. 136 114Google Scholar

    [5]

    Ping J, Zhu S, Shi M X, Wu S M, Shen M Q, Liu X Y, Wen S P 2023 IEEE Trans. Netw. Sci. Eng. 10 3609Google Scholar

    [6]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [7]

    Shi P, Li X, Zhang Y Q, Yan J J 2023 IEEE Trans. Circuits Syst. I-Regul. Pap. 70 1381Google Scholar

    [8]

    Chen Q, Li B, Yin W, Jiang X W, Chen X Y 2023 Chaos Soliton. Fract. 171 113440Google Scholar

    [9]

    Zhao N N, Qiao Y H, Miao J, Duan L J 2024 IEEE Trans. Fuzzy Syst. 32 1978Google Scholar

    [10]

    Zhang Y L, Yang L Q, Kou K I, Liu Y 2023 Neural Networks 165 274Google Scholar

    [11]

    Wang S S, Jian J G 2023 Chaos Soliton. Fract. 174 113790Google Scholar

    [12]

    Zhou X H, Cao J D, Wang X 2023 Neural Networks 160 97Google Scholar

    [13]

    Mahemuti R, Abdurahman A 2023 Mathematics 11 1291Google Scholar

    [14]

    Chakraborty A, Veeresha P 2024 Chaos Soliton. Fract. 182 114810Google Scholar

    [15]

    Yu F, Kong X X, Yao W, Zhang J, Cai S, Lin H R, Jin J 2024 Chaos Soliton. Fract. 179 114440Google Scholar

    [16]

    Sun W, Li B W, Wu A L, Guo W L, Wu X Q 2023 IEEE T. Cybern. 53 6277Google Scholar

    [17]

    Ding D, Tang Z, Park J H, Wang Y, Ji Z C 2023 IEEE T. Cybern. 53 887Google Scholar

    [18]

    Surendar R, Muthtamilselvan M, Ahn K 2024 Chaos Soliton. Fract. 181 114659Google Scholar

    [19]

    Saeed N A, Saleh H A, El-Ganaini W A, Awrejcewicz J, Mahmoud H A 2024 Chin. J. Phys. 88 311Google Scholar

    [20]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2023 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [21]

    Dong Z K, Ji X Y, Lai C S, Qi D L, Zhou G D, Lai L L 2023 IEEE Consum. Electron. Mag. 12 94Google Scholar

    [22]

    Liu J Y, Xiong F E, Zhou Y, Duan S K, Hu X F 2024 IEEE Trans. Cogn. Dev. Syst. 16 794Google Scholar

    [23]

    Lei Z Y, Yang J C, Qiu H S, Zhang X Z, Liu J Z 2024 Electronics 13 2229Google Scholar

    [24]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4419Google Scholar

    [25]

    Kuwahara T, Oshio R, Kimura M, Zhang R Y, Nakashima Y 2024 Neurocomputing 593 127792Google Scholar

    [26]

    Mannan Z I, Adhikari S P, Yang C J, Budhathoki R K, Kim H, Chua L 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 3458Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos 15 3435Google Scholar

    [28]

    Chua L O 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [29]

    Yan S H, Zhang Y Y, Ren Y, Sun X, Cui Y, Li L 2023 Nonlinear Dynam. 111 17547Google Scholar

    [30]

    Huang L L, Wang S T, Lei T F, Huang K Y, Li C B 2024 Int. J. Bifurcat. Chaos 34 2450022Google Scholar

    [31]

    Li C L, Wang X, Du J R, Li Z J 2023 Nonlinear Dynam. 111 21333Google Scholar

    [32]

    Wang M J, Peng J W, He S B, Zhang X, Iu H H C 2023 Fractal Fract. 7 818Google Scholar

    [33]

    Zhang S H, Zhang H L, Lin H R, Wang C 2024 Nonlinear Dynam. 112 12411Google Scholar

    [34]

    Jia J, Wang F, Zeng Z G 2022 Neurocomputing 505 413Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Cao H B, Wang F Q 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29 617Google Scholar

    [37]

    Liu W, Wang F Q, Ma X K 2015 Int. J. Numer. Model. 28 335Google Scholar

    [38]

    Xu B, Zou S T, Bai L B, Chen K, Zhao J 2024 Nonlinear Dynam. 112 1395Google Scholar

    [39]

    Chua L O 2018 Appl. Phys. A-Mater. Sci. Process. 124 563Google Scholar

    [40]

    Dong Y J, Wang G Y, Chen G R, Shen Y R, Ying J J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105203Google Scholar

    [41]

    Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K, Zhou C 2021 Nonlinear Dynam. 106 959Google Scholar

    [42]

    Wei Z C 2011 Phys. Lett. A 376 102Google Scholar

    [43]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 物理学报 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [44]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [45]

    Bhat S P, Bernstein D S 2000 SIAM J. Control Optim. 38 751Google Scholar

    [46]

    Polyakov A 2012 IEEE Trans. Autom. Control 57 2106Google Scholar

    [47]

    Sánchez-Torres J D, Gómez-Gutiérrez D, López E, Loukianov A G 2018 IMA J. Math. Control Inf. 35 i1Google Scholar

    [48]

    Wongvanich N, Roongmuanpha N, Tangsrirat W 2023 IEEE Access 11 88388Google Scholar

    [49]

    Kang X Y, Chai L, Liu H K 2023 Int. J. Control Autom. Syst. 21 1210Google Scholar

    [50]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504Google Scholar

    [51]

    Shirkavand M, Pourgholi M 2018 Chaos Soliton. Fract. 113 135Google Scholar

    [52]

    Han S 2023 J. Mar. Sci. Eng. 11 2191Google Scholar

  • 图 1  新型局部有源忆阻器的紧磁滞回线 (a) f = 20 GHz, 不同幅值; (b) Vm= 1 V, 不同频率

    Fig. 1.  Pinched hysteresis loop of the novel locally active memristor: (a) Different amplitudes for f = 20 GHz; (b) different frequencies for Vm= 1 V.

    图 2  忆导函数图

    Fig. 2.  Diagram of the memductance function $ G\left( \varphi \right) $.

    图 3  新型局部有源忆阻器的断电图与动态路线图

    Fig. 3.  POP and DRM of the novel locally active memristor.

    图 4  (a)状态$ {\varphi _1} $切换到状态$ {\varphi _2} $(正电压脉冲的幅值Vm= 1 V); (b)低电平忆导$G\left( {{\varphi _1}} \right)$切换到高电平忆导$G\left( {{\varphi _2}} \right)$(正电压脉冲的幅值Vm= 1 V)

    Fig. 4.  (a) Switching from the state $ {\varphi _1} $ to the state $ {\varphi _2} $ (a positive voltage pulse with amplitude Vm= 1 V); (b) switching from the low-level memductance $G\left( {{\varphi _1}} \right)$ to the high-level memductance $G\left( {{\varphi _2}} \right)$(a positive voltage pulse with amplitude Vm= 1 V).

    图 5  (a) 状态$ {\varphi _2} $切换到状态$ {\varphi _1} $ (负电压脉冲的幅值Vm= –2 V); (b) 高电平忆导$G\left( {{\varphi _2}} \right)$切换到低电平忆导$G\left( {{\varphi _1}} \right)$ (负电压脉冲的幅值Vm= –2 V)

    Fig. 5.  (a) Switching from the state $ {\varphi _2} $ to the state $ {\varphi _1} $ (a negative voltage pulse with amplitude Vm= –2 V); (b) switching from the high-level memductance $G\left( {{\varphi _2}} \right)$ to the low-level memductance $G\left( {{\varphi _1}} \right)$(a negative voltage pulse with amplitude Vm= –2 V).

    图 6  耦合强度$k$变化时分岔图和李雅普诺夫指数 (a)耦合强度$k$变化时分岔图; (b)耦合强度$k$变化时李雅普诺夫指数

    Fig. 6.  Bifurcation diagram and Lyapunov exponents with the coupling strength $k$ changing: (a) Bifurcation diagram with the coupling strength $k$ changing; (b) Lyapunov exponents with the coupling strength $k$ changing.

    图 7  不同耦合强度$k$, 尖峰放电模式的相图及时域波形图

    Fig. 7.  Phase diagrams and time domain waveform diagrams of spiking firing modes, with different coupling strengths $k$.

    图 8  不同耦合强度$k$, 簇发放电模式的相图及时域波形图

    Fig. 8.  Phase diagrams and domain waveform diagrams of bursting firing modes, with different coupling strengths $k$.

    图 9  初始状态$\varphi \left( 0 \right)$变化时分岔图, $\varphi \left( 0 \right) \in \left[ { - 0.4, 0.4} \right]$

    Fig. 9.  Bifurcation diagram with the initial state $\varphi \left( 0 \right)$ changing, $\varphi \left( 0 \right) \in \left[ { - 0.4, 0.4} \right]$.

    图 10  李雅普诺夫指数

    Fig. 10.  Lyapunov exponents.

    图 11  0-1测试

    Fig. 11.  0-1 test.

    图 12  电路实现 (a) 新型局部有源忆阻器的电路实现; (b) HR神经元的电路实现; (c) FHN神经元的电路实现

    Fig. 12.  Circuit implementations: (a) Circuit implementation of the novel locally active memristor; (b) circuit implementation of the HR neuron; (c) circuit implementation of the FHN neuron.

    图 13  电路实现的相图及时域波形图(周期2尖峰放电模式) (a) 相图; (b) 时域波形图

    Fig. 13.  Phase diagram and time domain waveform diagram of circuit implementation (period-2 spiking firing mode): (a) Phase diagram; (b) time domain waveform.

    图 14  电路实现的相图及时域波形图(混沌尖峰放电模式) (a)相图; (b)时域波形图

    Fig. 14.  Phase diagram and time domain waveform diagram of circuit implementation (chaotic spiking firing mode): (a) Phase diagram; (b) time domain waveform.

    图 15  有限时间同步策略作用下滑模面与同步误差的响应曲线 (a)有限时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b)同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Fig. 15.  Response curves of sliding mode surfaces and synchronization errors when the finite-time synchronization strategy acts: (a) Finite-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$.

    图 16  固定时间同步策略作用下滑模面与同步误差的响应曲线 (a) 固定时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) 同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Fig. 16.  Response curves of sliding mode surfaces and synchronization errors when the fixed-time synchronization strategy acts: (a) Fixed-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$.

    图 17   新型预定义时间同步策略作用下滑模面与同步误差的响应曲线 (a)新型预定义时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b)同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Fig. 17.  Response curves of sliding mode surfaces and synchronization errors when the novel predefined-time synchronization strategy acts: (a) Novel predefined-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    图 18  新型预定义时间同步策略作用下相图 (a) $ \left( {{x_1}, {y_1}} \right) $; (b) $ \left( {{x_2}, {y_2}} \right) $; (c) $ \left( {{x_3}, {y_3}} \right) $; (d) $ \left( {{x_4}, {y_4}} \right) $; (e) $ \left( {{x_5}, {y_5}} \right) $

    Fig. 18.  Phase diagrams when the novel predefined-time synchronization strategy acts: (a) $ \left( {{x_1}, {y_1}} \right) $; (b) $ \left( {{x_2}, {y_2}} \right) $; (c) $ \left( {{x_3}, {y_3}} \right) $; (d) $ \left( {{x_4}, {y_4}} \right) $; (e) $ \left( {{x_5}, {y_5}} \right) $.

    图 19  传统预定义时间同步策略作用下滑模面与同步误差的响应曲线 (a)传统预定义时间滑模面${s_1}, {s_2}, {s_3}, {s_4}, {s_5}$; (b)同步误差${e_1}, {e_2}, {e_3}, {e_4}, {e_5}$

    Fig. 19.  Response curves of sliding mode surfaces and synchronization errors when the traditional predefined-time synchronization strategy acts: (a) Traditional predefined-time sliding mode surfaces ${s_1}, {s_2}, {s_3}, {s_4}, {s_5}$; (b) synchronization errors ${e_1}, {e_2}, {e_3}, {e_4}, {e_5}$.

    图 20  鲁棒性的验证

    Fig. 20.  Verification of robustness.

    表 1  放电模式

    Table 1.  Firing modes.

    耦合强度$k$放电模式相图编号时域波形图编号
    0.0070周期1尖峰放电图7(a)图7(b)
    0.0400周期2尖峰放电图7(c)图7(d)
    0.1200周期4尖峰放电图7(e)图7(f)
    0.1691周期5尖峰放电图7(g)图7(h)
    0.1428周期6尖峰放电图7(i)图7(j)
    0.1290周期8尖峰放电图7(k)图7(l)
    0.1800混沌尖峰放电图7(m)图7(n)
    0.4150周期4簇发放电图8(a)图8(b)
    0.3600周期8簇发放电图8(c)图8(d)
    0.4800随机簇发放电图8(e)图8(f)
    下载: 导出CSV

    表 2  新型忆阻耦合异质神经元的电路参数

    Table 2.  Circuit parameters of the novel memristor-coupled heterogeneous neuron.

    电路参数 类型
    $R$, ${R_5}$, ${R_6}$, ${R_8}$,
    ${R_{10}}$, ${R_{14}}$, ${R_{16}}$
    电阻/kΩ $200$
    ${R_1}$ 电阻/kΩ $ 2700 $
    ${R_2}$ 电阻/kΩ $ 33.333 $
    ${R_3}$, ${R_9}$, ${R_{15}}$ 电阻/kΩ $ 40 $
    ${R_4}$ 电阻/kΩ $ 100 $
    ${R_7}$ 电阻/kΩ $66.667$
    ${R_{11}}$ 电阻/kΩ $ 3000 $
    ${R_{12}}$, ${R_{13}}$ 电阻/kΩ $ 1000 $
    ${R_k}$ 电阻/kΩ $ {{200} \mathord{\left/ {\vphantom {{200} k}} \right. } k} $
    ${C_0}$ 电容/nF $40$
    ${V_{{\text{HR}}}}$, ${V_{{\text{FHN}}}}$ 直流电压源/V $ 1 $
    下载: 导出CSV
  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821Google Scholar

    [2]

    Syed Ali M, Stamov G, Stamova I, Ibrahim T F, Dawood A A, Osman Birkea F M 2023 Mathematics 11 4248Google Scholar

    [3]

    Zhang J R, Lu J G, Jin X C, Yang X Y 2023 Neural Networks 167 680Google Scholar

    [4]

    Wu X, Liu S T, Wang H Y, Wang Y 2023 ISA Trans. 136 114Google Scholar

    [5]

    Ping J, Zhu S, Shi M X, Wu S M, Shen M Q, Liu X Y, Wen S P 2023 IEEE Trans. Netw. Sci. Eng. 10 3609Google Scholar

    [6]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [7]

    Shi P, Li X, Zhang Y Q, Yan J J 2023 IEEE Trans. Circuits Syst. I-Regul. Pap. 70 1381Google Scholar

    [8]

    Chen Q, Li B, Yin W, Jiang X W, Chen X Y 2023 Chaos Soliton. Fract. 171 113440Google Scholar

    [9]

    Zhao N N, Qiao Y H, Miao J, Duan L J 2024 IEEE Trans. Fuzzy Syst. 32 1978Google Scholar

    [10]

    Zhang Y L, Yang L Q, Kou K I, Liu Y 2023 Neural Networks 165 274Google Scholar

    [11]

    Wang S S, Jian J G 2023 Chaos Soliton. Fract. 174 113790Google Scholar

    [12]

    Zhou X H, Cao J D, Wang X 2023 Neural Networks 160 97Google Scholar

    [13]

    Mahemuti R, Abdurahman A 2023 Mathematics 11 1291Google Scholar

    [14]

    Chakraborty A, Veeresha P 2024 Chaos Soliton. Fract. 182 114810Google Scholar

    [15]

    Yu F, Kong X X, Yao W, Zhang J, Cai S, Lin H R, Jin J 2024 Chaos Soliton. Fract. 179 114440Google Scholar

    [16]

    Sun W, Li B W, Wu A L, Guo W L, Wu X Q 2023 IEEE T. Cybern. 53 6277Google Scholar

    [17]

    Ding D, Tang Z, Park J H, Wang Y, Ji Z C 2023 IEEE T. Cybern. 53 887Google Scholar

    [18]

    Surendar R, Muthtamilselvan M, Ahn K 2024 Chaos Soliton. Fract. 181 114659Google Scholar

    [19]

    Saeed N A, Saleh H A, El-Ganaini W A, Awrejcewicz J, Mahmoud H A 2024 Chin. J. Phys. 88 311Google Scholar

    [20]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2023 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [21]

    Dong Z K, Ji X Y, Lai C S, Qi D L, Zhou G D, Lai L L 2023 IEEE Consum. Electron. Mag. 12 94Google Scholar

    [22]

    Liu J Y, Xiong F E, Zhou Y, Duan S K, Hu X F 2024 IEEE Trans. Cogn. Dev. Syst. 16 794Google Scholar

    [23]

    Lei Z Y, Yang J C, Qiu H S, Zhang X Z, Liu J Z 2024 Electronics 13 2229Google Scholar

    [24]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4419Google Scholar

    [25]

    Kuwahara T, Oshio R, Kimura M, Zhang R Y, Nakashima Y 2024 Neurocomputing 593 127792Google Scholar

    [26]

    Mannan Z I, Adhikari S P, Yang C J, Budhathoki R K, Kim H, Chua L 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 3458Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos 15 3435Google Scholar

    [28]

    Chua L O 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [29]

    Yan S H, Zhang Y Y, Ren Y, Sun X, Cui Y, Li L 2023 Nonlinear Dynam. 111 17547Google Scholar

    [30]

    Huang L L, Wang S T, Lei T F, Huang K Y, Li C B 2024 Int. J. Bifurcat. Chaos 34 2450022Google Scholar

    [31]

    Li C L, Wang X, Du J R, Li Z J 2023 Nonlinear Dynam. 111 21333Google Scholar

    [32]

    Wang M J, Peng J W, He S B, Zhang X, Iu H H C 2023 Fractal Fract. 7 818Google Scholar

    [33]

    Zhang S H, Zhang H L, Lin H R, Wang C 2024 Nonlinear Dynam. 112 12411Google Scholar

    [34]

    Jia J, Wang F, Zeng Z G 2022 Neurocomputing 505 413Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Cao H B, Wang F Q 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29 617Google Scholar

    [37]

    Liu W, Wang F Q, Ma X K 2015 Int. J. Numer. Model. 28 335Google Scholar

    [38]

    Xu B, Zou S T, Bai L B, Chen K, Zhao J 2024 Nonlinear Dynam. 112 1395Google Scholar

    [39]

    Chua L O 2018 Appl. Phys. A-Mater. Sci. Process. 124 563Google Scholar

    [40]

    Dong Y J, Wang G Y, Chen G R, Shen Y R, Ying J J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105203Google Scholar

    [41]

    Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K, Zhou C 2021 Nonlinear Dynam. 106 959Google Scholar

    [42]

    Wei Z C 2011 Phys. Lett. A 376 102Google Scholar

    [43]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 物理学报 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [44]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [45]

    Bhat S P, Bernstein D S 2000 SIAM J. Control Optim. 38 751Google Scholar

    [46]

    Polyakov A 2012 IEEE Trans. Autom. Control 57 2106Google Scholar

    [47]

    Sánchez-Torres J D, Gómez-Gutiérrez D, López E, Loukianov A G 2018 IMA J. Math. Control Inf. 35 i1Google Scholar

    [48]

    Wongvanich N, Roongmuanpha N, Tangsrirat W 2023 IEEE Access 11 88388Google Scholar

    [49]

    Kang X Y, Chai L, Liu H K 2023 Int. J. Control Autom. Syst. 21 1210Google Scholar

    [50]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504Google Scholar

    [51]

    Shirkavand M, Pourgholi M 2018 Chaos Soliton. Fract. 113 135Google Scholar

    [52]

    Han S 2023 J. Mar. Sci. Eng. 11 2191Google Scholar

  • [1] 赖强, 王君. 基于滑模趋近律的忆阻混沌系统有限和固定时间同步. 物理学报, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013
    [2] 王梦蛟, 杨琛, 贺少波, 李志军. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [3] 张诗琪, 杨化通. 不确定性的定量描述和熵不确定关系. 物理学报, 2023, 72(11): 110303. doi: 10.7498/aps.72.20222443
    [4] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [5] 黄颖, 顾长贵, 杨会杰. 神经网络超参数优化的删除垃圾神经元策略. 物理学报, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [6] 古亚娜, 梁燕, 王光义, 夏晨阳. NbOx忆阻神经元的设计及其在尖峰神经网络中的应用. 物理学报, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [7] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [8] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [9] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [10] 白婧, 关富荣, 唐国宁. 神经元网络中局部同步引发的各种效应. 物理学报, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [11] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响. 物理学报, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [12] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [13] 修春波, 刘畅, 郭富慧, 成怡, 罗菁. 迟滞混沌神经元/网络的控制策略及应用研究. 物理学报, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [14] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [15] 王曦, 王渝红, 李兴源, 苗淼. 考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计. 物理学报, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [16] 孙晓娟, 杨白桦, 吴晔, 肖井华. 异质神经元的排列对环形耦合神经元网络频率同步的影响. 物理学报, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [17] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步. 物理学报, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [18] 何国光, 朱萍, 陈宏平, 谢小平. 阈值耦合混沌神经元的同步研究. 物理学报, 2010, 59(8): 5307-5312. doi: 10.7498/aps.59.5307
    [19] 马军, 苏文涛, 高加振. Hindmarsh-Rose混沌神经元自适应同步和参数识别的优化研究. 物理学报, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [20] 岳 东, Jun Yoneyama. 含不确定性混沌系统的模糊自适应同步. 物理学报, 2003, 52(2): 292-297. doi: 10.7498/aps.52.292
计量
  • 文章访问数:  1060
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-07-25
  • 上网日期:  2024-08-09
  • 刊出日期:  2024-09-05

/

返回文章
返回