搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合肥先进光源: 赋能关联电子系统研究

孙喆 沈大伟 罗震林 闫文盛

引用本文:
Citation:

合肥先进光源: 赋能关联电子系统研究

孙喆, 沈大伟, 罗震林, 闫文盛
cstr: 32037.14.aps.73.20240943

Hefei Advanced Light Facility: Empowering research of correlated electron systems

Sun Zhe, Shen Da-Wei, Luo Zhen-Lin, Yan Wen-Sheng
cstr: 32037.14.aps.73.20240943
PDF
HTML
导出引用
  • 合肥先进光源是一个第四代衍射极限储存环光源, 计划于2028年投入运行, 凭借其高亮度和高相干性X射线, 将突破当前X射线技术研究关联电子系统所面临的时空分辨率瓶颈, 为理解这些材料中新奇物性的本质和微观起源提供关键信息. 本文介绍了合肥先进光源的主要科学目标和技术优势, 重点阐述了角分辨光电子能谱、磁圆二色、相干X射线散射和相干X射线成像等核心技术在量子材料和关联电子系统研究中的应用前景. 这些技术将能精细解析电子/自旋/轨道态的分布和动力学过程, 揭示各种新奇量子现象, 以及关联电子体系中各种序参量的涨落. 合肥先进光源的建成将为解码复杂量子态和非平衡演化行为提供先进的技术支持, 最终推动量子材料和关联电子系统在能源、信息等前沿领域的应用.
    The Hefei Advanced Light Facility is the fourth-generation diffraction-limited storage ring light source, scheduled to begin operation in 2028. With its high-brightness and highly coherent X-rays, it will break through the current spatiotemporal resolution bottlenecks of X-ray techniques in studying correlated electron systems, providing crucial information for understanding the nature and microscopic origins of novel physical properties in these materials. This article introduces the main scientific goals and technical advantages of the Hefei Advanced Light Facility, focusing on the application perspectives of advanced technologies such as angle-resolved photoemission spectroscopy, magnetic circular dichroism, coherent X-ray scattering, and coherent X-ray imaging in researches of quantum materials and correlated electron systems. These techniques will enable the detailed analysis of the distribution and dynamics of electronic/spin/orbital states, reveal various novel quantum phenomena, and elucidate the fluctuations of order parameters in correlated electron systems. The completion of the Hefei Advanced Light Facility will provide advanced technical supports for decoding complex quantum states and non-equilibrium properties, ultimately promoting the application of quantum materials and correlated electron systems in frontier fields such as energy and information.
      通信作者: 孙喆, zsun@ustc.edu.cn
      Corresponding author: Sun Zhe, zsun@ustc.edu.cn
    [1]

    Jens Als-Nielsen, Des McMorrow 著 (封东来 译) 2015 现代X光物理原理 (上海: 复旦大学出版社)

    Als-Nielsen J, McMorrow D (translated by Feng D L) 2015 Modern Elements of X-ray Physics (Shanghai: Fudan University Press

    [2]

    麦振洪2013同步辐射光源及其应用 (上卷和下卷) (北京: 科学出版社)

    Mai Z H 2013 Synchrotron Radiation Sources and Applications (Vol. 1 and 2) (Beijing: Science Press

    [3]

    Eberhardt W 2015 J. Electron Spectrosc. 200 31Google Scholar

    [4]

    Eriksson M, van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [5]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [6]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [7]

    Lisi S, Lu X B, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nat. Phys. 17 189Google Scholar

    [8]

    Cattelan M, Fox N A 2018 Nanomaterials-Basel 8 284Google Scholar

    [9]

    Mo S K 2017 Nano Converg. 4 6Google Scholar

    [10]

    Chen C T, Sette F, Ma Y, Modesti S 1990 Phys. Rev. B 42 7262Google Scholar

    [11]

    van der Laan G, Figueroa A I 2014 Coordin. Chem. Rev. 277 95Google Scholar

    [12]

    Klewe C, Qian L, Mengmeng Y, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Chanyong H, Jia L, Hicken R J, Shafer P, Arenholz E, van der Laan G, Qian Z 2020 Synchrotron Radiat. News 33 12Google Scholar

    [13]

    Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N J, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T O, Han Z V, Sun X D, Núñez-Regueiro M, Rougemaille N 2020 ACS Appl. Mater. Inter. 12 30702Google Scholar

    [14]

    Barinov A, Dudin P, Gregoratti L, Locatelli A, Mentes T O, Niño M A, Kiskinova M 2009 Nucl. Instrum. Meth. A 601 195Google Scholar

    [15]

    Sutton M, Mochrie S G J, Greytak T, Nagler S E, Berman L E, Held G A, et al. 1991 Nature 352 608Google Scholar

    [16]

    Bluschke M, Basak R, Barbour A, Warner A N, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A 2022 Sci. Adv. 8 eabn6882Google Scholar

    [17]

    Shpyrko O G 2014 J. Synchrotron Radiat. 21 1057Google Scholar

    [18]

    Sandy A R, Zhang Q T, Lurio L B 2018 Annu. Rev. Mater. Res. 48 167Google Scholar

    [19]

    Zhang Q T, Dufresne E M, Sandy A R 2018 Curr. Opin. Solid St. M. 22 202Google Scholar

    [20]

    Shpyrko O G, Isaacs E D, Logan J M, Feng Y J, Aeppli G, Jaramillo R, Kim H C, Rosenbaum T F, Zschack P, Sprung M, Narayanan S, Sandy A R 2007 Nature 447 68Google Scholar

    [21]

    Grübel G, Madsen A, Robert A 2008 Soft Matter Characterization (Dordrecht: Springer) p953

    [22]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [23]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [24]

    Rau C 2017 SRN 30 19Google Scholar

    [25]

    Tripathi A, Mohanty J, Dietze S H, Shpyrko O G, Shipton E, Fullerton E E, Kim S S, McNulty I 2011 Proc. Natl. Acad. Sci. U. S. A. 108 13393Google Scholar

    [26]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [27]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [28]

    Donnelly C, Scagnoli V 2020 J. Phys. : Condens. Matter 32 213001Google Scholar

    [29]

    Lo Y H, Zhao L, Gallagher-Jones M, Rana A, Lodico J J, Xiao W, Regan B C, Miao J 2018 Nat. Commun. 9 1826Google Scholar

  • 图 1  合肥先进光源XMCD线站配置 (a) 双波荡器光源示意图; (b) XMCD谱; (c) 双光路设计的俯视图

    Fig. 1.  Configuration of the XMCD beamline at the Hefei Advanced Light Source: (a) Schematic diagram of the twin undulator sources; (b) XMCD spectrum; (c) top view of the dual beam path design.

    图 2  相干X射线散射实验设置(a)和反铁磁衍射图案的演化(b) (得到文献[16]的授权重印, 版权归©2022美国科学促进协会所有)

    Fig. 2.  Coherent X-ray scattering experimental setup (a) and evolution of antiferromagnetic diffraction patterns (b) (Reproduced with permission of Ref. [16], Copyright of ©2022 The American Association for the Advancement of Science).

    图 3  相干衍射成像技术对多层Gd/Fe薄膜中的铁磁畴的成像和原位磁场调控研究 (a) X射线扫描相干X射线成像测量的示意图, 对比度主要来自X射线磁圆二色性(XMCD)效应, 在远场用X射线面探测器记录衍射图案; (b) 样品磁化强度随外加磁场变化时, 重建图像中Gd的磁构型演化(得到文献[25]的授权重印, 版权归©2011美国国家科学院所有)

    Fig. 3.  Coherent diffraction imaging of ferromagnetic domains in multilayer Gd/Fe thin films and their in-situ magnetic field manipulation study: (a) Schematic diagram of X-ray scanning coherent X-ray imaging measurement, where the contrast primarily arises from the XMCD effect, and diffraction patterns are recorded in the far-field using an X-ray area detector; (b) evolution of the Gd magnetic configuration in reconstructed images as the sample magnetization changes with the applied external magnetic field (Reproduced with permission of Ref. [25], Copyright of ©2011 National Academy of Sciences).

  • [1]

    Jens Als-Nielsen, Des McMorrow 著 (封东来 译) 2015 现代X光物理原理 (上海: 复旦大学出版社)

    Als-Nielsen J, McMorrow D (translated by Feng D L) 2015 Modern Elements of X-ray Physics (Shanghai: Fudan University Press

    [2]

    麦振洪2013同步辐射光源及其应用 (上卷和下卷) (北京: 科学出版社)

    Mai Z H 2013 Synchrotron Radiation Sources and Applications (Vol. 1 and 2) (Beijing: Science Press

    [3]

    Eberhardt W 2015 J. Electron Spectrosc. 200 31Google Scholar

    [4]

    Eriksson M, van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [5]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [6]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [7]

    Lisi S, Lu X B, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nat. Phys. 17 189Google Scholar

    [8]

    Cattelan M, Fox N A 2018 Nanomaterials-Basel 8 284Google Scholar

    [9]

    Mo S K 2017 Nano Converg. 4 6Google Scholar

    [10]

    Chen C T, Sette F, Ma Y, Modesti S 1990 Phys. Rev. B 42 7262Google Scholar

    [11]

    van der Laan G, Figueroa A I 2014 Coordin. Chem. Rev. 277 95Google Scholar

    [12]

    Klewe C, Qian L, Mengmeng Y, N’Diaye A T, Burn D M, Hesjedal T, Figueroa A I, Chanyong H, Jia L, Hicken R J, Shafer P, Arenholz E, van der Laan G, Qian Z 2020 Synchrotron Radiat. News 33 12Google Scholar

    [13]

    Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N J, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T O, Han Z V, Sun X D, Núñez-Regueiro M, Rougemaille N 2020 ACS Appl. Mater. Inter. 12 30702Google Scholar

    [14]

    Barinov A, Dudin P, Gregoratti L, Locatelli A, Mentes T O, Niño M A, Kiskinova M 2009 Nucl. Instrum. Meth. A 601 195Google Scholar

    [15]

    Sutton M, Mochrie S G J, Greytak T, Nagler S E, Berman L E, Held G A, et al. 1991 Nature 352 608Google Scholar

    [16]

    Bluschke M, Basak R, Barbour A, Warner A N, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A 2022 Sci. Adv. 8 eabn6882Google Scholar

    [17]

    Shpyrko O G 2014 J. Synchrotron Radiat. 21 1057Google Scholar

    [18]

    Sandy A R, Zhang Q T, Lurio L B 2018 Annu. Rev. Mater. Res. 48 167Google Scholar

    [19]

    Zhang Q T, Dufresne E M, Sandy A R 2018 Curr. Opin. Solid St. M. 22 202Google Scholar

    [20]

    Shpyrko O G, Isaacs E D, Logan J M, Feng Y J, Aeppli G, Jaramillo R, Kim H C, Rosenbaum T F, Zschack P, Sprung M, Narayanan S, Sandy A R 2007 Nature 447 68Google Scholar

    [21]

    Grübel G, Madsen A, Robert A 2008 Soft Matter Characterization (Dordrecht: Springer) p953

    [22]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [23]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [24]

    Rau C 2017 SRN 30 19Google Scholar

    [25]

    Tripathi A, Mohanty J, Dietze S H, Shpyrko O G, Shipton E, Fullerton E E, Kim S S, McNulty I 2011 Proc. Natl. Acad. Sci. U. S. A. 108 13393Google Scholar

    [26]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [27]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [28]

    Donnelly C, Scagnoli V 2020 J. Phys. : Condens. Matter 32 213001Google Scholar

    [29]

    Lo Y H, Zhao L, Gallagher-Jones M, Rana A, Lodico J J, Xiao W, Regan B C, Miao J 2018 Nat. Commun. 9 1826Google Scholar

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [5] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算. 物理学报, 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [6] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响. 物理学报, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [7] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [8] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [9] 程冠晓, 胡超. X射线相衬成像光子筛. 物理学报, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [10] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究. 物理学报, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [11] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [12] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [13] 汤 征, 李长真, 尹 镝, 朱本鹏, 汪丽莉, 王俊峰, 熊 鋭, 王取泉, 石 兢. 强耦合磁失措自旋冰系统Dy2Ti2O7单晶生长和基本磁性质测量. 物理学报, 2006, 55(12): 6532-6537. doi: 10.7498/aps.55.6532
    [14] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [15] 杨家敏, 丁耀南, 郑志坚, 王耀梅, 张文海, 张继彦, 刘进元, 山 冰, 高盛琛, 任有来, 刘秀琴. 时空分辨软x射线谱诊断技术研究. 物理学报, 2003, 52(6): 1427-1431. doi: 10.7498/aps.52.1427
    [16] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究. 物理学报, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [17] 孙可煦, 江少恩, 黄天暄, 易荣清, 崔延莉, 王红斌, 陈久森, 于瑞珍, 丁耀南, 丁永坤, 唐道源, 温树槐. 滤波差分法测量软X射线谱. 物理学报, 2000, 49(1): 98-101. doi: 10.7498/aps.49.98
    [18] 朱士尧, 徐纪华, 赵淑君, 李醒. B的KαX射线谱精细结构的研究. 物理学报, 1991, 40(9): 1411-1416. doi: 10.7498/aps.40.1411
    [19] 章辉煌, 林尊琪, 何兴法, 张正泉, 王笑琴, 逯其荣, 谷忠民, 庄亦飞, 崔季秀, 余文炎, 李家明, 龚美霞, 张小秋, 雷志远, 杨斌洲, 赵卫. Mg微管靶喷口电子密度及X射线谱的时间分辨特性. 物理学报, 1989, 38(11): 1838-1844. doi: 10.7498/aps.38.1838
    [20] 郭常霖, 吉昂, 陶光仪. 原级X射线谱强度分布的定量测定. 物理学报, 1981, 30(10): 1351-1360. doi: 10.7498/aps.30.1351
计量
  • 文章访问数:  1300
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-13
  • 上网日期:  2024-08-23
  • 刊出日期:  2024-10-05

/

返回文章
返回