-
随着超快科学和阿秒脉冲技术的发展, 基于孤立阿秒脉冲的泵浦-探测系统由于能实现对电子动力学的时间分辨测量, 已成为人们开展阿秒超快过程研究不可或缺的关键技术. 但要获得稳定可靠的泵浦-探测信号, 需要保证泵浦与探测光之间阿秒级的高精度同步, 较大的抖动将会导致信号产生弥散、甚至被淹埋在噪声中, 从而无法获得真实的物理图像. 由于阿秒脉冲从产生到应用终端之间的距离通常较长, 要实现阿秒时间分辨, 就必须对阿秒光脉冲与泵浦光进行阿秒量级的延时锁定. 针对这一问题, 本文发展了一种新型的双层光路系统, 通过对获得的干涉条纹进行快速傅里叶变换, 将获得的时间抖动量反馈给压电平移台实时补偿光程漂移, 实现了泵浦光与探测光之间阿秒量级的同步锁定. 应用该方案到光路长度从1—10 m的阿秒泵浦探测系统, 得到了锁定精度分别从7.64—31.76 as的结果, 分析表明系统延时误差与距离呈严格的线性关系, 决定数R2 = 0.96. 本研究工作表明, 使用小型干涉仪可实现对大科学装置中长距离阿秒泵浦探测系统的锁定精度进行快速检测, 这对如非共线阿秒条纹相机、时间分辨光电子能谱仪、相干合成等应用具有一定的参考意义.With the development of ultrafast science and attosecond laser technology, the pump-probe system based on isolated attosecond laser pulses is a key to attosecond science, which will be used to study electronic dynamics on an attosecond time-scale. To obtain stable and reliable signals, it is necessary to ensure ultra-stable and ultra-accurate synchronization. Any timing jitter can cause signal to disperse or get buryied in noise, making it impossible to obtain the true physical mechanism. Based on the above, the delay between pump laser pulse and probe laser pulse must be controlled with an attosecond time resolution. In this work, a dual-layer system is developed to achieve high-precision synchronization locking. To ensure that both layers have the same time jitter, we design an adapter to secure the elements placed during installation. Timing jitter is obtained by shaking interference fringes through fast Fourier transformation, and can be calculated in several ms. Then error signals are fed back to the PZT stage in order to compensate for real-time optical path drift. Through such a design, a time-delay accuracy of 7.64 as to 15.53 as is realized, which is linearly related to the interferometer arm length ranging from 1 m to 5 m, with an R2 of 0.96. Moreover, the error between the experimental result of arm length of 8 m and 10 m and the result fitted with the above data is less than 3 as. These results show that using a small interferometer can achieve the fast detection of the time-delay accuracy of long-arm attosecond pump-probe detection system in large scientific instrument, which is of great significance in guiding ther applications such as in non-collinear attosecond streaking spectroscopy, time-resolved photoelectron spectroscopy, and coherent synthesis.
-
Keywords:
- ultrafast science /
- pump-probe system /
- delay locking
[1] Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283Google Scholar
[2] Zewail A H 1988 Science 242 1645Google Scholar
[3] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar
[4] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar
[5] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186Google Scholar
[6] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar
[7] Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145Google Scholar
[8] Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195Google Scholar
[9] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar
[10] Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar
[11] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar
[12] Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202Google Scholar
[13] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar
[14] Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854Google Scholar
[15] Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905Google Scholar
[16] Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029Google Scholar
[17] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 物理学报 68 214204Google Scholar
Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204Google Scholar
[18] Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar
[19] Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287Google Scholar
[20] Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105Google Scholar
[21] Cooley J W, Tukey J W 1965 Math. Comp. 19 297Google Scholar
-
-
[1] Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283Google Scholar
[2] Zewail A H 1988 Science 242 1645Google Scholar
[3] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar
[4] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar
[5] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186Google Scholar
[6] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar
[7] Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145Google Scholar
[8] Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195Google Scholar
[9] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar
[10] Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar
[11] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar
[12] Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202Google Scholar
[13] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar
[14] Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854Google Scholar
[15] Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905Google Scholar
[16] Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029Google Scholar
[17] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 物理学报 68 214204Google Scholar
Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204Google Scholar
[18] Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar
[19] Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287Google Scholar
[20] Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105Google Scholar
[21] Cooley J W, Tukey J W 1965 Math. Comp. 19 297Google Scholar
计量
- 文章访问数: 814
- PDF下载量: 61
- 被引次数: 0