搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辅助电场对低密度聚乙烯微观结构演变与直流电气特性的影响

李永军 韩永森 张文江琪 郭文敏 孙云龙 李忠华

引用本文:
Citation:

辅助电场对低密度聚乙烯微观结构演变与直流电气特性的影响

李永军, 韩永森, 张文江琪, 郭文敏, 孙云龙, 李忠华
cstr: 32037.14.aps.73.20241113

Influence of assisted electric field on the microstructure evolution and direct current electrical properties of low-density polyethylene

Li Yong-Jun, Han Yong-Sen, Zhang Wen-Jiang-Qi, Guo Wen-Min, Sun Yun-Long, Li Zhong-Hua
cstr: 32037.14.aps.73.20241113
PDF
HTML
导出引用
  • 低密度聚乙烯(low-density polyethylene, LDPE)是电缆绝缘的基础材料. 辅助电场可以调控聚合物的微观结构, 但是其目前在电气绝缘领域的应用却鲜有报道. 分别在LDPE试样成型过程中的熔融、冷却结晶及全阶段(即熔融及冷却结晶全阶段)施加辅助电场, 制备了基于电场辅助的LDPE试样. 探究了在不同阶段施加辅助电场对LDPE的微观结构演变、直流击穿特性、电导特性、空间电荷特性和陷阱特性的影响规律. 结果表明, 与未处理的LDPE相比, 在熔融阶段、冷却阶段和全阶段施加辅助电场的LDPE具有更多更小的球晶, 在全阶段施加辅助电场的LDPE的球晶数量最多, 尺寸最小. 同时, 辅助电场能够明显提升LDPE的直流电气特性. 其中, 全阶段施加辅助电场的LDPE与未处理LDPE相比, 击穿场强提升了35.8%, 电导率降低了72.0%, 平均空间电荷密度降低了20.2%. 本研究为电气绝缘聚合物的微观结构调控和直流电气特性提升提供了新的思路.
    Low-density polyethylene (LDPE) is the basic material of the high-voltage direct current (DC) power cable insulation. The assisted electric field is a common way to regulate the microstructure of polymers, but its application in the field of electrical insulating polymers is rarely reported. In order to study the influence of the assisted electric field on the microstructure evolution and DC electrical properties of LDPE, the LDPEs without and with being treated with assisted electric field are prepared in the melting stage, cooling stage, and the whole stage (i.e. the melting stage and cooling stage), respectively. The influence of the assisted electric field applied in the different stages on the microstructure evolution of LDPE is characterized by the scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The DC electrical properties of the untreated LDPE and the treated LDPE are investigated via measuring their breakdown strengths, conductivities, space charges and surface potential decays. The results show that, compared with the untreated LDPE, the LDPE treated with the assisted electric field in the whole stage has the smallest spherulite size and the largest spherulite number, followed by the LDPE treated in the cooling stage and the melting stage. The assisted electric field applied in different stages can significantly improve the DC electrical properties of LDPE. Compared with the untreated LDPE, the LDPE treated in the melting stage, the cooling stage and the whole stage increases the breakdown strength but greatly reduces the conductivity and space charge accumulation. The DC electrical properties of LDPE treated with the assisted electric field in the whole-stage are the best. Compared with untreated LDPE, the LDOE treated in whole stage increases the breakdown field strength by 35.8%, reduces the conductivity by 72.0%, and the space charge accumulation by 20.2%. More and smaller spherulites lead to the formation of more interface paths and introduce more deep-traps, which contributes to improving the DC electrical characteristics of the electric field assisted LDPE. This work provides a new idea for improving the DC electrical properties of polymers.
      通信作者: 韩永森, hys2006@hrbust.edu.cn ; 李忠华, drzhhli@hrbust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51837003)资助的课题.
      Corresponding author: Han Yong-Sen, hys2006@hrbust.edu.cn ; Li Zhong-Hua, drzhhli@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51837003).
    [1]

    杜伯学, 李忠磊, 周硕凡, 范铭升 2021 电气工程学报 16 2Google Scholar

    Du B X, Li Z L, Zhou S F, Fan M S 2021 J. Electr. Eng. 16 2Google Scholar

    [2]

    Li Y J, Han Y S, Sun Y L, Li Z H 2024 Compos. Sci. Technol. 247 110437Google Scholar

    [3]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [4]

    王赫宇, 李忠磊, 杜伯学 2024 物理学报 73 127702Google Scholar

    Wang H Y, Li Z L, Du B X 2024 Acta Phys. Sin. 73 127702Google Scholar

    [5]

    Huang X Y, Zhang J, Jiang P K, Tanaka T 2019 IEEE Electr. Insul. Mag. 35 7Google Scholar

    [6]

    聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [7]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [8]

    Wang Y Y, Wang C, Chen W G, Xiao K 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1713Google Scholar

    [9]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2024 High Volt. 9 429Google Scholar

    [10]

    Schmidt K, Schoberth H G, Ruppel M, Zettl H, Hänsel H, Weiss T M, Urban V, Krausch G, Böker A 2008 Nat. Mater. 7 142Google Scholar

    [11]

    Wu Y, Du B X, Li Z L, Wang H Y, Zheng Z 2023 Polymer 280 126072Google Scholar

    [12]

    李剑, 沈健, 杨丽君, 章华中, 赵玉顺 2010 高电压技术 36 2629Google Scholar

    Li J, Shen J, Yang L J, Zhang H Z, Zhao Y S 2010 High Voltage Eng. 36 2629Google Scholar

    [13]

    Zeng S X, Li Q, Liu H X, Wang J Q, Wang K 2023 J. Polym. Eng. 43 497Google Scholar

    [14]

    Liedel C, Schindler K A, Pavan M J, Lewin C, Pester C W, Ruppel M, Urban V S, Shenhar R, Böker A 2013 Small 9 3276Google Scholar

    [15]

    Ruppel M, Pester C W, Langner K M, Sevink G J A, Schoberth H G, Schmidt K, Urban V S, Mays J W, Böker A 2013 ACS nano 7 3854Google Scholar

    [16]

    Adrjanowicz K, Paluch M, Richert R 2017 Phys. Chem. Chem. Phys. 20 925Google Scholar

    [17]

    Pester C W, Liedel C, Ruppel M, Böker A 2017 Prog. Polym. Sci. 64 182Google Scholar

    [18]

    Wu Y F, Wang S H, Zhou H, Liu H J, Li S T, Wen D K 2023 IEEE 4th International Conference on Electrical Materials and Power Equipment Shanghai, China, May 7–10, 2023 p1

    [19]

    Han Y S, Zhao C G, Sun J, Li Z H 2023 IEEE Trans. Dielectr. Electr. Insul. 30 2706Google Scholar

    [20]

    Vaughan A S, Zhao Y, Barré L L, Sutton S J, Swingler S G 2003 Eur. Polym. J. 39 355Google Scholar

    [21]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [22]

    Li Y J, Han Y S, Pang J J, Jin D, Sun Y L, Li Z H 2024 Macromolecules 57 5497Google Scholar

    [23]

    Yang K, Ren Y R, Wu K N, Li J Y, Jing Z H, Zhang Z J, Dong J Y 2022 Compos. Sci. Technol. 223 109422Google Scholar

    [24]

    易姝慧, 王亚林, 吴建东, 尹毅 2018 电气工程学报 13 71Google Scholar

    Yi S H, Wang Y L, Wu J D, Yin Y 2018 J. Electr. Eng. 13 71Google Scholar

    [25]

    阴凯, 郭其阳, 张添胤, 李静, 陈向荣 2024 物理学报 73 127703Google Scholar

    Yin K, Guo Q Y, Zhang T Y, Li J, Chen X R 2024 Acta Phys. Sin. 73 127703Google Scholar

    [26]

    Han Y S, Li S T, Min D M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 639Google Scholar

    [27]

    Schmelzer J W P 2008 J. Non-Cryst. Solids 354 269Google Scholar

    [28]

    Liu J P, Du B Y, Xie F C, Zhang F J, He T B 2002 Polymer 43 1903Google Scholar

    [29]

    Li S T, Nie Y J, Wang W W, Yang L Q, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3215Google Scholar

    [30]

    Li Z L, Zhong Z Y, Du B X 2019 Polymer 185 121935Google Scholar

    [31]

    蔡姝娆, 高梓巍, 纪民尊, 姚佳池, 李鹏新, 闵道敏, 李盛涛, 武庆周 2021 电气工程学报 16 50Google Scholar

    Cai S R, Gao Z W, Ji M Z, Yao J C, Li P X, Min D M, Li S T, Wu Q Z 2021 J. Electr. Eng. 16 50Google Scholar

    [32]

    高雅涵, 黄兴溢, 江平开, 闵道敏, 李盛涛 2020 中国电机工程学报 40 330Google Scholar

    Gao Y H, Huang X Y, Jiang P K, Min D M, Li S T 2020 Proc. CSEE 40 330Google Scholar

  • 图 1  制备辅助电场处理的LDPE试样的模具示意图

    Fig. 1.  Schematic illustration of the mold for the electric-field assisted LDPE.

    图 2  在不同阶段施加辅助电场的LDPE的球晶形貌与球晶尺寸分布 (a) 未处理的球晶形貌; (b) 未处理的球晶尺寸分布; (c)熔融阶段的球晶形貌; (d) 熔融阶段的球晶尺寸分布; (e) 冷却阶段的球晶形貌; (f) 冷却阶段的球晶尺寸分布; (g) 全阶段的球晶形貌; (h) 全阶段的球晶尺寸分布

    Fig. 2.  Spherulite morphology and size distribution of LDPE treated with assisted electric field at different stages: (a) Morphology of the untreated spherulite; (b) size distribution of untreated spherulite; (c) spherulite morphology of melting stage; (d) spherulite size distribution of melting stage; (e) spherulite morphology of cooling stage; (f) spherulite size distribution of cooling stage; (g) spherulite morphology of whole stage; (h) spherulite size distribution of whole stage.

    图 3  不同阶段辅助电场处理LDPE的DSC曲线 (a) 加热过程; (b) 冷却过程

    Fig. 3.  DSC curves of the electric field assisted LDPE at different stages: (a) Heating process; (b) cooling process.

    图 4  不同阶段辅助电场处理LDPE的击穿特性 (a) 三参数Weibull分布; (b) E0E63.2

    Fig. 4.  Breakdown characteristics of the electric field assisted LDPE at different stages: (a) Three-parameter Weibull distribution; (b) E0 and E63.2.

    图 5  不同阶段辅助电场处理LDPE的电导特性 (a) J-E特性曲线; (b) 阈值场强和电导率

    Fig. 5.  Conductivity characteristics of the electric field assisted LDPE at different stages: (a) J-E characteristic curves; (b) threshold field and conductivity.

    图 6  不同阶段辅助电场处理LDPE的空间电荷特性 (a) 未处理; (b) 熔融阶段; (c) 冷却阶段; (d) 全阶段

    Fig. 6.  Space charge characteristics of the electric field assisted LDPE at different stages: (a) Untreated; (b) melting stage; (c) cooling stage; (d) whole stage.

    图 7  不同阶段辅助电场处理LDPE的平均空间电荷密度

    Fig. 7.  Average space charge density of electric field assisted LDPE at different stages.

    图 8  不同阶段辅助电场处理LDPE的表面电位衰减特性 (a) 表面电位; (b) 陷阱分布特性

    Fig. 8.  Surface potential decay characteristics of the electric field assisted LDPE at different stages: (a) Surface potential; (b) trap distribution characteristics.

    图 9  不同阶段辅助电场处理对LDPE微观结构的影响(a) 未处理LDPE; (b) 熔融阶段; (c) 冷却阶段; (d) 全阶段

    Fig. 9.  Effect of the electric field assisted LDPE at different stages on its microstructure: (a) Untreated; (b) melting stage; (c) cooling stage; (d) whole stage.

    图 10  LDPE球晶尺寸与深陷阱密度间的关系

    Fig. 10.  Relationship between the spherulite size and the deep trap density of LDPE.

    图 11  直流电气特性与深陷阱密度之间的关系 (a) 特征击穿场强; (b) 阈值场强; (c) 电导率; (d) 平均空间电荷密度

    Fig. 11.  Relationship between the DC electrical properties and the deep trap density: (a) Characteristic breakdown strength; (b) threshold field; (c) conductivity; (d) average space charge density.

    表 1  不同阶段施加辅助电场处理LDPE的结晶温度、熔融温度、熔融焓和结晶度

    Table 1.  Crystallization temperature, melting temperature, melting enthalpy and crystallinity of electric field assisted LDPE at different stages.

    试样Tc/℃Tm/℃ΔHm/(J·g–1)Xc/%
    未处理96.28108.47124.9643.33
    熔融阶段96.28108.98126.2643.78
    冷却阶段95.26109.66127.9044.35
    全阶段95.26109.83129.2544.82
    下载: 导出CSV
  • [1]

    杜伯学, 李忠磊, 周硕凡, 范铭升 2021 电气工程学报 16 2Google Scholar

    Du B X, Li Z L, Zhou S F, Fan M S 2021 J. Electr. Eng. 16 2Google Scholar

    [2]

    Li Y J, Han Y S, Sun Y L, Li Z H 2024 Compos. Sci. Technol. 247 110437Google Scholar

    [3]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [4]

    王赫宇, 李忠磊, 杜伯学 2024 物理学报 73 127702Google Scholar

    Wang H Y, Li Z L, Du B X 2024 Acta Phys. Sin. 73 127702Google Scholar

    [5]

    Huang X Y, Zhang J, Jiang P K, Tanaka T 2019 IEEE Electr. Insul. Mag. 35 7Google Scholar

    [6]

    聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar

    Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar

    [7]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [8]

    Wang Y Y, Wang C, Chen W G, Xiao K 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1713Google Scholar

    [9]

    Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2024 High Volt. 9 429Google Scholar

    [10]

    Schmidt K, Schoberth H G, Ruppel M, Zettl H, Hänsel H, Weiss T M, Urban V, Krausch G, Böker A 2008 Nat. Mater. 7 142Google Scholar

    [11]

    Wu Y, Du B X, Li Z L, Wang H Y, Zheng Z 2023 Polymer 280 126072Google Scholar

    [12]

    李剑, 沈健, 杨丽君, 章华中, 赵玉顺 2010 高电压技术 36 2629Google Scholar

    Li J, Shen J, Yang L J, Zhang H Z, Zhao Y S 2010 High Voltage Eng. 36 2629Google Scholar

    [13]

    Zeng S X, Li Q, Liu H X, Wang J Q, Wang K 2023 J. Polym. Eng. 43 497Google Scholar

    [14]

    Liedel C, Schindler K A, Pavan M J, Lewin C, Pester C W, Ruppel M, Urban V S, Shenhar R, Böker A 2013 Small 9 3276Google Scholar

    [15]

    Ruppel M, Pester C W, Langner K M, Sevink G J A, Schoberth H G, Schmidt K, Urban V S, Mays J W, Böker A 2013 ACS nano 7 3854Google Scholar

    [16]

    Adrjanowicz K, Paluch M, Richert R 2017 Phys. Chem. Chem. Phys. 20 925Google Scholar

    [17]

    Pester C W, Liedel C, Ruppel M, Böker A 2017 Prog. Polym. Sci. 64 182Google Scholar

    [18]

    Wu Y F, Wang S H, Zhou H, Liu H J, Li S T, Wen D K 2023 IEEE 4th International Conference on Electrical Materials and Power Equipment Shanghai, China, May 7–10, 2023 p1

    [19]

    Han Y S, Zhao C G, Sun J, Li Z H 2023 IEEE Trans. Dielectr. Electr. Insul. 30 2706Google Scholar

    [20]

    Vaughan A S, Zhao Y, Barré L L, Sutton S J, Swingler S G 2003 Eur. Polym. J. 39 355Google Scholar

    [21]

    Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar

    [22]

    Li Y J, Han Y S, Pang J J, Jin D, Sun Y L, Li Z H 2024 Macromolecules 57 5497Google Scholar

    [23]

    Yang K, Ren Y R, Wu K N, Li J Y, Jing Z H, Zhang Z J, Dong J Y 2022 Compos. Sci. Technol. 223 109422Google Scholar

    [24]

    易姝慧, 王亚林, 吴建东, 尹毅 2018 电气工程学报 13 71Google Scholar

    Yi S H, Wang Y L, Wu J D, Yin Y 2018 J. Electr. Eng. 13 71Google Scholar

    [25]

    阴凯, 郭其阳, 张添胤, 李静, 陈向荣 2024 物理学报 73 127703Google Scholar

    Yin K, Guo Q Y, Zhang T Y, Li J, Chen X R 2024 Acta Phys. Sin. 73 127703Google Scholar

    [26]

    Han Y S, Li S T, Min D M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 639Google Scholar

    [27]

    Schmelzer J W P 2008 J. Non-Cryst. Solids 354 269Google Scholar

    [28]

    Liu J P, Du B Y, Xie F C, Zhang F J, He T B 2002 Polymer 43 1903Google Scholar

    [29]

    Li S T, Nie Y J, Wang W W, Yang L Q, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3215Google Scholar

    [30]

    Li Z L, Zhong Z Y, Du B X 2019 Polymer 185 121935Google Scholar

    [31]

    蔡姝娆, 高梓巍, 纪民尊, 姚佳池, 李鹏新, 闵道敏, 李盛涛, 武庆周 2021 电气工程学报 16 50Google Scholar

    Cai S R, Gao Z W, Ji M Z, Yao J C, Li P X, Min D M, Li S T, Wu Q Z 2021 J. Electr. Eng. 16 50Google Scholar

    [32]

    高雅涵, 黄兴溢, 江平开, 闵道敏, 李盛涛 2020 中国电机工程学报 40 330Google Scholar

    Gao Y H, Huang X Y, Jiang P K, Min D M, Li S T 2020 Proc. CSEE 40 330Google Scholar

  • [1] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [2] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响. 物理学报, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [3] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [4] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [5] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [6] 王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏. 非平衡磁控溅射制备类石墨碳膜及性能研究. 物理学报, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [7] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [8] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [9] 朱智恩, 张冶文, 安振连, 郑飞虎. 用光刺激放电法研究纳米粉末掺杂低密度聚乙烯中陷阱能级. 物理学报, 2012, 61(6): 067701. doi: 10.7498/aps.61.067701
    [10] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [11] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [12] 丁万昱, 王华林, 苗壮, 张俊计, 柴卫平. 沉积参数对SiNx薄膜结构及阻透性能的影响. 物理学报, 2009, 58(1): 432-437. doi: 10.7498/aps.58.432
    [13] 杨雁, 李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性. 物理学报, 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [14] 丁万昱, 徐 军, 陆文琪, 邓新绿, 董 闯. 基片温度对SiNx薄膜结晶状态及机械性能的影响. 物理学报, 2008, 57(8): 5170-5175. doi: 10.7498/aps.57.5170
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [16] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [17] 邵守福, 郑 鹏, 张家良, 钮效鵾, 王春雷, 钟维烈. CaCu3Ti4O12陶瓷的微观结构和电学性能. 物理学报, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙. 氧化钒薄膜微观结构的研究. 物理学报, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [20] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系. 物理学报, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
计量
  • 文章访问数:  290
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-09
  • 修回日期:  2024-10-10
  • 上网日期:  2024-10-18
  • 刊出日期:  2024-11-20

/

返回文章
返回