搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塑性热电材料研究进展及展望

徐波 田永君

引用本文:
Citation:

塑性热电材料研究进展及展望

徐波, 田永君
cstr: 32037.14.aps.73.20241129

Research progress and prospects of plastic thermoelectric materials

Xu Bo, Tian Yong-Jun
cstr: 32037.14.aps.73.20241129
PDF
HTML
导出引用
  • 近年来, 以Ag2S为代表的塑性热电材料研究取得显著进展. 该类材料因具有较低的滑移势垒和较高的解理能, 表现出优异的室温塑性, 并可通过固溶优化实现塑性和热电性能的协同提升. 最新研究表明, Mg3Bi2基单晶材料在塑性变形能力和室温热电性能方面综合表现更佳. 微观结构表征及理论计算分析揭示了位错滑移在Mg3Bi2单晶塑性变形过程中的关键作用, 特别是多个滑移系表现出较低的滑移势垒. 这些发现不仅深化了对塑性热电材料微观变形机制的理解, 还为优化材料性能和开发新型柔性热电器件奠定了重要基础. 未来将这些材料应用于实际器件仍面临热稳定性、化学稳定性和界面接触等挑战, 这些问题的解决将推动塑性热电材料在柔性电子领域的应用.
    In recent years, significant progress has been made in the research of plastic thermoelectric materials, for example, Ag2S-based alloys. These materials exhibit excellent room-temperature plasticity due to their low slipping barrier energy and high cleavage energy, with synergistic enhancements in plasticity and thermoelectric properties achievable through alloying and doping strategies. The latest study on Mg3Bi2-based single crystals demonstrated superior performance in terms of plastic deformation capability and room-temperature thermoelectric properties. Microstructural characterization and theoretical calculation have revealed the crucial role of dislocation glide in the plastic deformation process of Mg3Bi2 single crystals, especially, the low slipping barrier energy observed in multiple slip systems. Importantly, the Te-doped single-crystalline Mg3Bi2 shows a power factor of ~55 μW cm–1 K–2 and ZT of ~0.65 at room temperature along the ab plane, which exceed those of the existing ductile thermoelectric materials. These findings not only deepen the understanding of microscopic deformation mechanisms in plastic thermoelectric materials but also establish an important foundation for optimizing material properties and developing novel flexible thermoelectric devices. Future applications of these materials in practical devices still face challenges in thermal stability, chemical stability, and interfacial contact. Addressing these issues will promote the application of plastic thermoelectric materials in the field of flexible electronics.
      通信作者: 田永君, fhcl@ysu.edu.cn
      Corresponding author: Tian Yong-Jun, fhcl@ysu.edu.cn
    [1]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Wu Z, Zhang S, Liu Z, Mu E, Hu Z 2022 Nano Energy 91 106692Google Scholar

    [4]

    Liu Z, Chen G 2020 Adv. Mater. Technol. 5 2000049Google Scholar

    [5]

    Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2019 Adv. Funct. Mater. 29 1805924Google Scholar

    [6]

    Wei T R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, Qiu P, Shan Z, Jiang J, Li R, Chen L, He J, Shi X 2020 Science 369 542Google Scholar

    [7]

    Oshima Y, Nakamura A, Matsunaga K 2018 Science 360 772Google Scholar

    [8]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [9]

    Hu H, Wang Y, Fu C, Zhao X, Zhu T 2022 The Innovation 3 100341

    [10]

    Wei T R, Qiu P, Zhao K, Shi X, Chen L 2023 Adv. Mater. 35 2110236Google Scholar

    [11]

    Yang Q, Yang S, Qiu P, Peng L, Wei T R, Zhang Z, Shi X, Chen L 2022 Science 377 854Google Scholar

    [12]

    Yang S, Gao Z, Qiu P, Liang J, Wei T R, Deng T, Xiao J, Shi X, Chen L 2021 Adv. Mater. 33 2007681Google Scholar

    [13]

    He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [14]

    Li Z, Zhang J, Wang S, Dong Z, Lin C, Luo J 2023 Scr. Mater. 228 115313Google Scholar

    [15]

    Chen H, Shao C, Huang S, Gao Z, Huang H, Pan Z, Zhao K, Qiu P, Wei T R, Shi X 2024 Adv. Energy Mater. 14 2303473Google Scholar

    [16]

    Gao Z, Yang Q, Qiu P, Wei T R, Yang S, Xiao J, Chen L, Shi X 2021 Adv. Energy Mater. 11 2100883Google Scholar

    [17]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [18]

    Zhao P, Xue W, Zhang Y, Zhi S, Ma X, Qiu J, Zhang T, Ye S, Mu H, Cheng J, Wang X, Hou S, Zhao L, Xie G, Cao F, Liu X, Mao J, Fu Y, Wang Y, Zhang Q 2024 Nature 631 777Google Scholar

    [19]

    Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T 2024 Nat. Commun. 15 5108Google Scholar

    [20]

    Zhang Z, Gao Z, Deng T, Song Q, Chen L, Bai S 2024 J. Mater. Chem. A 12 8893Google Scholar

    [21]

    Liu Z, Gao W, Oshima H, Nagase K, Lee C H, Mori T 2022 Nat. Commun. 13 1120Google Scholar

    [22]

    Shi X, Zhao T, Zhang X, Sun C, Chen Z, Lin S, Li W, Gu H, Pei Y 2019 Adv. Mater. 31 1903387Google Scholar

    [23]

    Li A, Nan P, Wang Y, Gao Z, Zhang S, Han Z, Zhao X, Ge B, Fu C, Zhu T 2022 Acta Mater. 239 118301Google Scholar

    [24]

    Wu X, Ma X, Yao H, Liang K, Zhao P, Hou S, Yin L, Yang H, Sui J, Lin X, Cao F, Zhang Q, Mao J 2023 ACS Appl. Mater. Interfaces 15 50216Google Scholar

  • 图 1  Ag2S基塑性热电材料 (a) Ag20S7Te3[12]; (b) Ag1.98S1/3Se1/3Te1/3[15]; (c) (Ag0.2Cu0.8)2S0.7Se0.3[16]; 基于Ag2S0.5Se0.5 (d)和Ag20S7Te3 (e)的塑性热电器件[10,12]. 引用的图片已获相关授权

    Fig. 1.  Ag2S-based plastic thermoelectric materials: (a) Ag20S7Te3[12]; (b) Ag1.98S1/3Se1/3Te1/3[15]; (c) (Ag0.2Cu0.8)2S0.7Se0.3[16]; thermoelectric devices based on Ag2S0.5Se0.5[10] (d) and Ag20S7Te3[12] (e). Reproduced with permission from John Wiley and Sons and The Royal Society of Chemistry.

    图 2  Mg3Bi2单晶塑性和热电性能[18] (a) Mg3Bi2单晶与其他材料的压缩应力应变曲线对比; (b) Mg3Bi2单晶与部分密排六方金属及塑性热电材料的拉伸应力应变曲线对比; (c) 传统热电材料的拉伸应力应变曲线; (d) 变形后的Mg3Bi2单晶材料; 热电材料功率因子(e)和热电优值(f)与相应的最大拉伸应变. 引用的图片已获相关授权

    Fig. 2.  Plasticity and thermoelectric properties of Mg3Bi2 single crystal[18]: (a) Compressive stress-strain curves of different thermoelectric materials and ductile semiconductors; (b) tensile stress-strain curves of different hexagonal close-packed metals and ductile semiconductors; (c) tensile stress-strain curves of traditional thermoelectric materials; (d) optical images of deformed Mg3Bi2; power factor (e) and room-temperature ZT (f) of different thermoelectric materials versus the maximum engineering tensile strain. Reproduced with permission from Springer Nature.

    图 3  Mg3Bi2单晶微观结构表征与第一性原理计算[18] 变形后Mg3Bi2单晶的扫描电子显微表征图 (a)和透射电子显微表征图(b); (c) Mg3Bi2单晶中观察到的滑移系; (d) $(1\bar 100)$面上的滑移势垒等高线图; (e) $(1\bar 100)$面上沿不同晶向的滑移能; (f) 沿$\langle 11\bar 2\bar 3 \rangle $方向滑移过程中的积分晶体轨道哈密顿布居; (g)—(k) 不同滑移步数时的晶体轨道哈密顿布居. 引用的图片已获相关授权

    Fig. 3.  Microstructure characterization of deformed Mg3Bi2 single crystal and the first-principles calculation[18]: (a) SEM and (b) TEM images of deformed Mg3Bi2 single crystal; (c) the schematic view of the slip systems in Mg3Bi2; (d) contour plot for the calculated slipping barrier energy of $(1\bar 100)$ plane; (e) slipping barrier energy of $(1\bar 100)$ plane along different crystallographic directions; (f) ICOHP for steps of slipping along $\langle 11\bar 2\bar 3 \rangle $ direction; (g)–(k) -COHP for steps of slipping along $ \langle 11\bar 2\bar 3 \rangle $ direction. Reproduced with permission from Springer Nature.

  • [1]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Wu Z, Zhang S, Liu Z, Mu E, Hu Z 2022 Nano Energy 91 106692Google Scholar

    [4]

    Liu Z, Chen G 2020 Adv. Mater. Technol. 5 2000049Google Scholar

    [5]

    Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2019 Adv. Funct. Mater. 29 1805924Google Scholar

    [6]

    Wei T R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, Qiu P, Shan Z, Jiang J, Li R, Chen L, He J, Shi X 2020 Science 369 542Google Scholar

    [7]

    Oshima Y, Nakamura A, Matsunaga K 2018 Science 360 772Google Scholar

    [8]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [9]

    Hu H, Wang Y, Fu C, Zhao X, Zhu T 2022 The Innovation 3 100341

    [10]

    Wei T R, Qiu P, Zhao K, Shi X, Chen L 2023 Adv. Mater. 35 2110236Google Scholar

    [11]

    Yang Q, Yang S, Qiu P, Peng L, Wei T R, Zhang Z, Shi X, Chen L 2022 Science 377 854Google Scholar

    [12]

    Yang S, Gao Z, Qiu P, Liang J, Wei T R, Deng T, Xiao J, Shi X, Chen L 2021 Adv. Mater. 33 2007681Google Scholar

    [13]

    He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [14]

    Li Z, Zhang J, Wang S, Dong Z, Lin C, Luo J 2023 Scr. Mater. 228 115313Google Scholar

    [15]

    Chen H, Shao C, Huang S, Gao Z, Huang H, Pan Z, Zhao K, Qiu P, Wei T R, Shi X 2024 Adv. Energy Mater. 14 2303473Google Scholar

    [16]

    Gao Z, Yang Q, Qiu P, Wei T R, Yang S, Xiao J, Chen L, Shi X 2021 Adv. Energy Mater. 11 2100883Google Scholar

    [17]

    Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar

    [18]

    Zhao P, Xue W, Zhang Y, Zhi S, Ma X, Qiu J, Zhang T, Ye S, Mu H, Cheng J, Wang X, Hou S, Zhao L, Xie G, Cao F, Liu X, Mao J, Fu Y, Wang Y, Zhang Q 2024 Nature 631 777Google Scholar

    [19]

    Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T 2024 Nat. Commun. 15 5108Google Scholar

    [20]

    Zhang Z, Gao Z, Deng T, Song Q, Chen L, Bai S 2024 J. Mater. Chem. A 12 8893Google Scholar

    [21]

    Liu Z, Gao W, Oshima H, Nagase K, Lee C H, Mori T 2022 Nat. Commun. 13 1120Google Scholar

    [22]

    Shi X, Zhao T, Zhang X, Sun C, Chen Z, Lin S, Li W, Gu H, Pei Y 2019 Adv. Mater. 31 1903387Google Scholar

    [23]

    Li A, Nan P, Wang Y, Gao Z, Zhang S, Han Z, Zhao X, Ge B, Fu C, Zhu T 2022 Acta Mater. 239 118301Google Scholar

    [24]

    Wu X, Ma X, Yao H, Liang K, Zhao P, Hou S, Yin L, Yang H, Sui J, Lin X, Cao F, Zhang Q, Mao J 2023 ACS Appl. Mater. Interfaces 15 50216Google Scholar

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 高君玲, 赵怀周, 许艳丽. 纳米SiO2复合对Mg3Sb2基材料热电性能的影响. 物理学报, 2023, 72(11): 117102. doi: 10.7498/aps.72.20230176
    [4] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [5] 唐昊, 白辉, 吕嘉南, 华思恒, 鄢永高, 杨东旺, 吴劲松, 苏贤礼, 唐新峰. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能. 物理学报, 2022, 71(16): 167101. doi: 10.7498/aps.71.20220549
    [6] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长. 物理学报, 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [7] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [10] 张华, 陈少平, 龙洋, 樊文浩, 王文先, 孟庆森. 微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理. 物理学报, 2015, 64(24): 247302. doi: 10.7498/aps.64.247302
    [11] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [12] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [13] 彭华, 王春雷, 李吉超, 王洪超, 王美晓. Mg2Si的电子结构和热电输运性质的理论研究. 物理学报, 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [14] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [15] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究. 物理学报, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [16] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析. 物理学报, 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [17] 张 忻, 李 佳, 路清梅, 张久兴, 刘燕琴. (Bi1-x Agx)2(Te1-ySey)3粉体的机械合金化制备及其放电等离子烧结体的热电输运特性. 物理学报, 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [18] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [19] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  1074
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-03
  • 上网日期:  2024-09-07
  • 刊出日期:  2024-10-20

/

返回文章
返回