搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关联退相位有色噪声通道下熵不确定关系的调控研究

余敏 郭有能

引用本文:
Citation:

关联退相位有色噪声通道下熵不确定关系的调控研究

余敏, 郭有能

Regulation of entropic uncertainty relation in correlated channels with dephasing colored noise

Yu Min, Guo You-Neng
PDF
HTML
导出引用
  • 不确定性原理限制了观察者对两个不相容可观测量的精确测量能力, 在量子信息科学领域的量子精密测量中扮演着重要角色. 本文研究关联退相位有色噪声通道下两量子比特系统的量子存储支撑熵不确定关系, 结合通道连续使用间的关联性和动力学演化中的非马尔科夫性调控熵不确定度及其下限. 分别选取最大纠缠态和可分离态作为系统的初态, 通过调节关联强度和非马尔科夫性发现: 完全关联通道可以最大程度地抑制退相干, 降低熵不确定度及其下限, 此时非马尔科夫效应不发挥作用; 部分关联通道与非马尔科夫效应结合可以在演化中某些时刻更有效的降低熵不确定度及其下限; 长时间演化后, 系统的熵不确定度及下限达到稳定值, 且稳定值只与通道的关联强度有关, 通道的关联性越强, 稳态的熵不确定度及下限越低. 最后分析熵不确定性及其下限降低的物理本质, 发现熵不确定度及其下限的降低源于系统量子关联的增加.
    The uncertainty principle which restricts the observer's ability to make precise measurements of two incompatible observables plays a crucial role in quantum precision measurement within the field of quantum information science. When quantum systems interact with their surroundings, they inevitably result in decoherence, which increases the uncertainty of the system. In the process of quantum information processing, the effective regulation of uncertainty becomes a key problem to be solved. In this work, we investigate the quantum-memory-assisted entropic uncertainty relation of a two-qubit system under correlated channels with dephasing colored noise. We demonstrate that it is possible to control the entropic uncertainty, denoted as U, and its lower bound, Ub, by combining correlations between successive uses of channels and the non-Markovianity of the dynamical evolution. Firstly, the evolutionary characteristics of the trace distance are employed to distinguish between Markovianity and non-Markovianity of the channel. Subsequently, the system is selected to be either a maximally entangled or separated state initially. By adjusting the strength of the correlations η, we find that with the increase of η, the entropic uncertainty and its lower bound decrease. Especially, if the channel is fully correlated (η = 1), the entropic uncertainty and its lower bound remain constant under the channel, indicating that decoherence is completely suppressed. A comparison of Markovian and non-Markovian channels reveals that the entropic uncertainty and its lower bound exhibit oscillatory behaviour under non-Markovian channels. The combination of correlations and non-Markovianity of the channel demonstrates that the entropic uncertainty and its lower bound can be reduced under fully correlated channels where the non-Markovianity has no effect. This is because fully correlated channels suppress decoherence to the greatest extent. Under partially correlated channels, the combination of correlations and non-Markovianity can result in a more effective reduction in the entropic uncertainty and its lower bound. Under such channels, correlations of the channel decrease the entropic uncertainty and its lower bound during the whole evolution, while the non-Markovianity contributes to the oscillations of them and reduce them in some specific time. Furthermore, the results show that the entropic uncertainty and its lower bound reach steady values that depend only on the strength of the correlations after long-time evolution. In other words, the stronger the correlations, the lower the entropic uncertainty and its lower bound of steady states. Finally, we analyse the physical nature of the decrease of the entropic uncertainty and its lower bound, and it is found that the decrease of the entropic uncertainty and its lower bound is due to the increase of the quantum correlations in the system.
  • 图 1  迹距离TD随时间的演化, 纵坐标为TD的数值, 蓝色实线、黑色虚线线分别对应通道参数$ \nu=0.1 $和10

    Fig. 1.  The evolution of the trace distance TD. Y-axis represents TD, and the blue solid curve and back dashed curve respectively correspond to $ \nu=0.1 $ and 10.

    图 2  初态为最大纠缠态时熵不确定度U及其下限$ U_{b} $随时间的演化, 纵坐标为U或$ U_{b} $的数值, 蓝色、绿色、黑色、红色曲线分别对应关联强度$ \eta=0, 0.5, 0.8, 1 $, 通道参数$ \nu=0.1 $, 呈现马尔科夫性

    Fig. 2.  The evolution of uncertainty U and its lower bound $ U_{b} $ of the system which is initially in a maximally entangled state. Y-axis represents U or $ U_{b} $, and blue, green, black and red curves correspond to η as 0, 0.5, 0.8, 1. The channel is Markovian, where $ \nu=0.1 $.

    图 3  初态为最大纠缠态时熵不确定度U及其下限$ U_{b} $随时间的演化, 纵坐标为U或$ U_{b} $的数值, 蓝色、绿色、黑色、红色曲线分别对应关联强度$ \eta=0, 0.5, 0.8, 1 $, 通道参数$ \nu=10 $, 呈现非马尔科夫性

    Fig. 3.  The evolution of uncertainty U and its lower bound $ U_{b} $ of the system which is initially in a maximally entangled state. Y-axis represents U or $ U_{b} $, and blue, green, black and red curves correspond to η as 0, 0.5, 0.8, 1. The channel is non-Markovian, where $ \nu=10 $.

    图 4  初态为可分离态时熵不确定度U及其下限$ U_{b} $随时间的演化, 纵坐标为U或$ U_{b} $的数值, 蓝色、绿色、黑色、红色曲线分别对应关联强度$ \eta=0, 0.5, 0.8, 1 $, 实线代表熵不确定度U, 虚线代表下限$ U_{b} $. 通道参数$ \nu=0.1 $, 呈现马尔科夫性

    Fig. 4.  The evolution of uncertainty U and its lower bound $ U_{b} $ of the system which is initially in a separated state. Y-axis represents U or $ U_{b} $, and blue, green, black and red curves correspond to η as 0, 0.5, 0.8, 1. The solid curves represent uncertainty U, and the dashed curves represent its lower bound $ U_{b} $. The channel is Markovian, where $ \nu=0.1 $.

    图 5  初态为可分离态时熵不确定度U及其下限$ U_{b} $随时间的演化, 纵坐标为U或$ U_{b} $的数值, 蓝色、绿色、黑色、红色曲线分别对应关联强度$ \eta=0, 0.5, 0.8, 1 $, 实线代表熵不确定度U, 虚线代表下限$ U_{b} $. 通道参数$ \nu=10 $, 呈现非马尔科夫性

    Fig. 5.  The evolution of uncertainty U and its lower bound $ U_{b} $ of the system which is initially in a separated state. Y-axis represents U or $ U_{b} $, and blue, green, black and red curves correspond to η as 0, 0.5, 0.8, 1. The solid curves represent uncertainty U, and the dashed curves represent its lower bound $ U_{b} $. The channel is non-Markovian, where $ \nu=10 $.

    图 6  初态为可分离态时量子关联$ Q(\rho_{AB}) $随时间的演化, 纵坐标为$ Q(\rho_{AB}) $的数值, 蓝色、绿色、黑色、红色曲线分别对应关联强度$ \eta=0, 0.5, 0.8, 1 $. (a)通道参数$ \nu= $$ 0.1 $, 呈现马尔科夫性; (b)通道参数$ \nu=10 $, 呈现非马尔科夫性

    Fig. 6.  The evolution of quantum correlations $ Q(\rho_{AB}) $ of the system which is initially in a separated state. Y-axis represents $ Q(\rho_{AB}) $, and blue, green, black and red curves correspond to η as 0, 0.5, 0.8. (a) The channel is Markovian, where $ \nu=0.1 $; (b) The channel is non-Markovian, where $ \nu=10 $.

  • [1]

    Heisenberg W 1927 Z. Phys. 43 172Google Scholar

    [2]

    Robertson H P 1929 Phys. Rev. 34 163Google Scholar

    [3]

    Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar

    [4]

    Kraus K 1987 Phys. Rev. D 35 3070Google Scholar

    [5]

    Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103Google Scholar

    [6]

    Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659Google Scholar

    [7]

    Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757Google Scholar

    [8]

    Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752Google Scholar

    [9]

    Shi J, Ding Z, Wu T, He J, Yu L, Sun W, Wang D and Ye L 2017 Laser Phys. Lett. 14 125208Google Scholar

    [10]

    Hall M J W, Cerf N J 2012 New J. Phys. 14 033040Google Scholar

    [11]

    Ekert A K 1991 Phys. Rev. Lett 67 661Google Scholar

    [12]

    Renes J M, Boileau J C 2009 Phys. Rev. Lett 103 020402Google Scholar

    [13]

    Haseli S, Dolatkhah H, Rangani Jahromi H, Salimi S, Khorashad A S 2020 Opt. Commun. 461 125287Google Scholar

    [14]

    Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634Google Scholar

    [15]

    Ng N H Y, Berta M, Wehner S 2012 Phys. Rev. A 86 042315Google Scholar

    [16]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar

    [17]

    Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802Google Scholar

    [18]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205Google Scholar

    [19]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [20]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 72Google Scholar

    [21]

    Wang T Y, Wang D 2024 Phys. Lett. B 855 138876Google Scholar

    [22]

    Wang T Y, Wang D 2014 Phys. Lett. A 499 129364

    [23]

    Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219Google Scholar

    [24]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar

    [25]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar

    [26]

    Bouafia Z, Oumennana M, Mansour M, Ouchni F 2024 Appl. Phys. B 130 94

    [27]

    Abdel-Wahab N H, Ibrahim T A S, Amin M E, Salah A 2024 Eur. Phys. J. D 78 28Google Scholar

    [28]

    Macchiavello C, Palma G M 2002 Phys. Rev. A 65 050301Google Scholar

    [29]

    D′Arrigo A, Benenti G, Falci G 2007 New. J. Phys. 9 310Google Scholar

    [30]

    D′Arrigo A, Benenti G, Falci G 2013 Phys. Rev. A 88 042337Google Scholar

    [31]

    Sk R, Panigrehi P K 2024 Phys. Rev. A 109 032425Google Scholar

    [32]

    Guo Y N, Fang M F, Wang G Y, Zeng K 2016 Quantum Inf. Process. 15 5129Google Scholar

    [33]

    Peng Z Y, Wu F L, Li J, Xue H N, Liu S Y, Wang Z Y 2023 Phys. Rev. A 107 022405Google Scholar

    [34]

    Yu M, Guo Y N 2024 Int. J. Theor. Phys 63 156Google Scholar

    [35]

    Xie Y X, Qin Z Y 2020 Quantum Inf. Process. 19 375Google Scholar

    [36]

    董曜, 纪爱玲, 张国锋 2022 物理学报 71 070303Google Scholar

    Dong Yao, Ji A L, Zhang G F 2022 Acta Phys. Sin. 71 070303Google Scholar

    [37]

    Zhang D H, Wu F L, Peng Z Y, Wang L, Liu S Y 2023 Quantum Inf. Process. 22 102Google Scholar

    [38]

    Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar

    [39]

    Haseli S, Hadipour M 2022 Int. J. Theor. Phys 61 117Google Scholar

    [40]

    Awasthi N, Joshi D K, Sachdev S 2022 Int. J. Theor. Phys 61 123Google Scholar

    [41]

    Hou L, Zhang Y N, Zhu Y G 2024 Int. J. Theor. Phys 62 221

    [42]

    Lindblad G 1976 Comm. Math. Phys 48 119Google Scholar

    [43]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402Google Scholar

    [44]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [45]

    Hwang B, Goan H S 2012 Phys. Rev. A 85 032321Google Scholar

    [46]

    Banu H, Rao K R 2024 Eur. Phys. J. Plus 139 436Google Scholar

    [47]

    Addis C, Karpat G, Macchiavello C, Maniscalco 2016 Phys. Rev. A 94 032121Google Scholar

    [48]

    AWasthi N, Haseli S, Johri U C, Salimi S, Dolatkhah H 2020 Quantum Inf. Process. 19 10Google Scholar

    [49]

    Wang G Y, Guo Y N, Zeng K 2018 Journal of Modern Optics 66 367

    [50]

    李丽娟, 明飞, 宋学科, 叶柳, 王栋 2022 物理学报 71 070302Google Scholar

    Li L J, Ming F, Song X K, Liu Y, Wang Dong 2022 Acta Phys. Sin. 71 070302Google Scholar

    [51]

    Hajihoseinlou H, Ahansaz B 2024 Laser Phys. 34 075202Google Scholar

    [52]

    Daffer S, Wodkiewicz K, Cresser J D, McIver J K 2004 Phys. Rev. A 70 010304(RGoogle Scholar

    [53]

    Cai X 2020 Sci. Rep. 10 88Google Scholar

    [54]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401Google Scholar

    [55]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar

    [56]

    Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J Dong, Ye L, Kais S 2017 Sci. Rep. 7 1066Google Scholar

    [57]

    Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86 012113Google Scholar

    [58]

    Hu M L, Zhou W 2019 Laser Phys. Lett. 16 045201Google Scholar

    [59]

    Hu M L, Fan H 2020 Sci. China-Phys. Mech. Astron 63 230322Google Scholar

    [60]

    Hu M L, Zhang Y H, Fan H 2021 Chin. Phys. B 30 030308Google Scholar

    [61]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [62]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [63]

    Mazzola L, Piilo J, Maniscalco S 2011 Int. J. Quantum Inf. 09 981Google Scholar

    [64]

    Pati A K, Wilde M M, Devi A R U, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105Google Scholar

    [65]

    Hu M L, Fan H 2013 Phys. Rev. A 88 014105Google Scholar

    [66]

    Hu M L, Fan H 2013 Phys. Rev. A 87 022314Google Scholar

  • [1] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究. 物理学报, doi: 10.7498/aps.73.20240450
    [2] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长对量子关联光子对产生. 物理学报, doi: 10.7498/aps.73.20241274
    [3] 曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和. Markov环境下“X”态基于CHSH不等式的量子非局域关联检验. 物理学报, doi: 10.7498/aps.72.20222218
    [4] 张诗琪, 杨化通. 不确定性的定量描述和熵不确定关系. 物理学报, doi: 10.7498/aps.72.20222443
    [5] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, doi: 10.7498/aps.71.20211453
    [6] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验. 物理学报, doi: 10.7498/aps.71.20220445
    [7] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, doi: 10.7498/aps.71.20221053
    [8] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, doi: 10.7498/aps.71.20212197
    [9] 张金峰, 阿拉帕提·阿不力米提, 杨帆, 艾克拜尔·阿木提江, 唐诗生, 艾合买提·阿不力孜. 不同外加磁场中Kaplan-Shekhtman-Entin-Wohlman-Aharony相互作用对量子失协非马尔科夫演化的影响. 物理学报, doi: 10.7498/aps.70.20211277
    [10] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [11] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, doi: 10.7498/aps.67.20180812
    [12] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象. 物理学报, doi: 10.7498/aps.64.210302
    [13] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响. 物理学报, doi: 10.7498/aps.64.030301
    [14] 李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法. 物理学报, doi: 10.7498/aps.63.130701
    [15] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, doi: 10.7498/aps.62.110303
    [16] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, doi: 10.7498/aps.62.130301
    [17] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, doi: 10.7498/aps.62.130305
    [18] 侯周国, 何怡刚, 李兵. 基于马尔科夫链的射频识别防碰撞测试. 物理学报, doi: 10.7498/aps.60.025211
    [19] 汪鸿伟. 量子阱中的电子关联. 物理学报, doi: 10.7498/aps.46.1618
    [20] 黄湘友. 不确定关系的经典类比. 物理学报, doi: 10.7498/aps.45.353
计量
  • 文章访问数:  202
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-08

/

返回文章
返回