搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极紫外波段的少电子原子精密光谱测量

肖峥嵘 张恒之 华林强 唐丽艳 柳晓军

引用本文:
Citation:

极紫外波段的少电子原子精密光谱测量

肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军
cstr: 32037.14.aps.73.20241231

Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region

Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun
cstr: 32037.14.aps.73.20241231
PDF
HTML
导出引用
  • 基于少电子原子体系的精密光谱测量为 “质子半径之谜”、量子电动力学高精度检验等重大科学问题的解决带来曙光, 因此备受关注. 然而, 少电子体系许多重要的跃迁谱线位于真空/极紫外波段, 缺少合适的 窄线宽光源是阻碍其测量精度进一步提升的主要原因之一. 近年来, 基于稀有气体高次谐波过程产生的极紫外窄线宽相干光源为精密测量这些跃迁谱线带来了新的机遇. 最新研究表明, 极紫外光梳的最短波长可至12 nm, 最高功率可至mW量级, 线宽可至0.3 MHz; 而极紫外波段的拉姆齐光梳亦可以实现kHz量级的光谱精度, 且其工作波长有潜力覆盖整个极紫外波段. 本文重点介绍少电子原子极紫外波段精密光谱测量相关技术方法与研究进展. 首先简要介绍基于少电子原子体系精密光谱测量的科学意义; 随后介绍极紫外波段少电子原子体系精密光谱测量方法, 即基于极紫外光梳的直接频率梳光谱方法和极紫外波段的拉姆齐频率梳光谱方法; 然后介绍利用这些方法开展少电子原子体系精密光谱实验测量以及相关精密谱理论计算方面的研究进展, 以及这些方法在其他相关研究中面临的重要机遇; 最后给出未来工作展望.
    Precision spectroscopic measurements on the few-electron atomic systems have attracted much attention because they shed light on important topics such as the “proton radius puzzle” and testing quantum electrodynamics (QED). However, many important transitions of few-electron atomic systems are located in the vacuum/extreme ultraviolet region. Lack of a suitable narrow linewidth light source is one of the main reasons that hinder the further improvement of the spectral resolution.Recently, narrow linewidth extreme ultraviolet (XUV) light sources based on high harmonic processes in rare gases have opened up new opportunities for precision measurements of these transitions. The recently implemented XUV comb has a shortest wavelength of about 12 nm, a maximum power of milliwatts, and a linewidth of about 0.3 MHz, making it an ideal tool for precision measurements in the XUV band. At the same time, the Ramsey comb in the XUV band can achieve a spectral resolution of the kHz range, and may operate throughout the entire XUV band.With these useful tools, direct frequency spectroscopy and Ramsey comb spectroscopy in the XUV region are developed, and precision spectroscopic measurements of few-electron atomic systems with these methods are becoming a hot topic in cutting-edge science. In this paper, we provide an overview of the current status and the progress of relevant researches, both experimentally and theoretically, and discuss the opportunities for relevant important transitions in the extreme ultraviolet band.
      通信作者: 华林强, hualq@wipm.ac.cn ; 柳晓军, xjliu@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12121004, U21A20435, 12393823, 92265206, 12174402, 12393821)、中国科学院基础与交叉前沿科研先导专项(B类先导专项)(批准号: 0920000)和中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-055)资助的课题.
      Corresponding author: Hua Lin-Qiang, hualq@wipm.ac.cn ; Liu Xiao-Jun, xjliu@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12121004, U21A20435, 12393823, 92265206, 12174402, 12393821), the Pioneer Research Project for Basic and Interdisciplinary Frontiers of Chinese Academy of Sciences (Category B) (Grant No. 0920000), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055).
    [1]

    Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar

    [2]

    Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar

    [3]

    Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar

    [4]

    Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Jentschura U D, Hass M 2004 Can. J. Phys. 82 103

    [7]

    Rengelink  R J, Werf Y, Notermans  R, Jannin R, Eikema K S E, Hoogerland  M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [8]

    Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [9]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [10]

    Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar

    [11]

    Schiller S 2022 Contemporary Phys. 63 247Google Scholar

    [12]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [13]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [14]

    Indelicato P 2019 J. Phys. B 52 232001Google Scholar

    [15]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [16]

    Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [17]

    Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [18]

    Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar

    [19]

    Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [20]

    Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw

    [21]

    Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [22]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [23]

    Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar

    [24]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar

    [25]

    Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar

    [26]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [27]

    Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar

    [28]

    Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar

    [29]

    Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar

    [30]

    Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar

    [31]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar

    [32]

    Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192

    [33]

    Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar

    [34]

    Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [35]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [36]

    Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar

    [37]

    Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206

    [38]

    Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203

    [39]

    Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar

    [40]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [41]

    Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar

    [42]

    Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar

    [43]

    Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar

    [44]

    Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar

    [45]

    Ramsey N F 1949 Phys. Rev. 76 996Google Scholar

    [46]

    Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar

    [47]

    Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar

    [48]

    Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [49]

    Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar

    [50]

    Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar

    [51]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [52]

    Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature

    [53]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag

    [54]

    Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76

    [55]

    Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar

    [56]

    Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar

    [57]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [58]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [59]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [60]

    Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar

    [61]

    Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar

    [62]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [63]

    Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [64]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [65]

    Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar

    [66]

    Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [67]

    Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [68]

    Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar

    [69]

    Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar

  • 图 1  直接频率梳光谱方法原理示意图 (a)重复频率和相位精确锁定的飞秒脉冲; (b)频率域对应的梳齿; (c)原子能级

    Fig. 1.  A schematically view of the principle of the direct frequency comb spectroscopy: (a) Femtosecond pulse trains after carrier-envelop phase stabilization; (b) comb teeth in the frequency domain; (c) atomic energy level.

    图 2  大范围扫描光梳重复频率得到原子上能态布居数演化的示意图

    Fig. 2.  A schematically view of the population oscillation when scanning the fr of the frequency comb for a large range.

    图 3  拉姆齐频率梳光谱方法原理示意图[23] (a)单一原子能级情况下扫描脉冲延时布居数的演化规律; (b)多原子能级情况下扫描脉冲延时布居数的演化规律

    Fig. 3.  A schematically view of the principle of the Ramsey comb spectroscopy[23]: (a) The population of the upper state oscillate with a single frequency if only one transition is excited; (b) the population of the upper state oscillate with multiple frequencies if multiple transitions are excited.

    图 4  利用极紫外光梳测量冷却氦离子1s→2s跃迁的方案示意图[31]

    Fig. 4.  A schematic view of measuring the 1s→2s transition in cold He+ with extreme ultraviolet comb [31].

    图 5  利用极紫外波段的拉姆齐光梳测量冷却氦离子1s→2s跃迁的方案示意图[32]

    Fig. 5.  A schematically view of measuring the 1s→2s transition in cold He+ with Ramsey comb spectroscopy in the extreme ultraviolet region [32].

    图 6  基于(2+1) REMPI方案激发氦原子1s→2s跃迁并测量氦离子随激光频率变化的离子产率[19]

    Fig. 6.  Measurement of the 1s→2s transition of He using the (2+1) REMPI scheme and measurement of the yield of He+ while tuning the excitation frequency[19].

    图 7  H原子1s→2s跃迁频率的各种修正计算[52]

    Fig. 7.  Corrections of different effects to the 1s→2s transition of H atom [52].

    图 8  氢原子1s→2s跃迁频率的比较, 蓝色代表的是实验测量结果, 洋红色代表的是理论计算值

    Fig. 8.  Comparison of the experimental (blue) and calculated (magenta) results of the 1s→2s transition of H atom.

    图 9  氦-4原子1s→2s跃迁频率的比较, 蓝色代表的是实验测量值, 洋红色代表的是唯一的理论计算结果

    Fig. 9.  Comparison of the experimental (blue) and calculated (magenta) results of the 1s→2s transition of He atom.

    图 10  利用真空紫外光梳直接测量钍的核能级跃迁[26]

    Fig. 10.  Direct spectroscopic measurement of Th nuclear electric quadrupole structure [26].

  • [1]

    Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar

    [2]

    Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar

    [3]

    Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar

    [4]

    Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Jentschura U D, Hass M 2004 Can. J. Phys. 82 103

    [7]

    Rengelink  R J, Werf Y, Notermans  R, Jannin R, Eikema K S E, Hoogerland  M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [8]

    Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [9]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [10]

    Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar

    [11]

    Schiller S 2022 Contemporary Phys. 63 247Google Scholar

    [12]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [13]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [14]

    Indelicato P 2019 J. Phys. B 52 232001Google Scholar

    [15]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [16]

    Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [17]

    Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [18]

    Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar

    [19]

    Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [20]

    Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw

    [21]

    Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [22]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [23]

    Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar

    [24]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar

    [25]

    Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar

    [26]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [27]

    Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar

    [28]

    Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar

    [29]

    Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar

    [30]

    Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar

    [31]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar

    [32]

    Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192

    [33]

    Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar

    [34]

    Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [35]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [36]

    Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar

    [37]

    Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206

    [38]

    Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203

    [39]

    Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar

    [40]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [41]

    Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar

    [42]

    Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar

    [43]

    Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar

    [44]

    Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar

    [45]

    Ramsey N F 1949 Phys. Rev. 76 996Google Scholar

    [46]

    Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar

    [47]

    Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar

    [48]

    Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [49]

    Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar

    [50]

    Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar

    [51]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [52]

    Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature

    [53]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag

    [54]

    Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76

    [55]

    Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar

    [56]

    Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar

    [57]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [58]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [59]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [60]

    Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar

    [61]

    Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar

    [62]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [63]

    Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [64]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [65]

    Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar

    [66]

    Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [67]

    Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [68]

    Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar

    [69]

    Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar

  • [1] 高克林. 少电子原子分子精密谱编者按. 物理学报, 2024, 73(20): 200101. doi: 10.7498/aps.73.200101
    [2] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息. 物理学报, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [4] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [5] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [6] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [7] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [8] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [9] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [10] 翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹. 量子相干态的二维电子光谱测量的原理、应用和发展. 物理学报, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [11] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量. 物理学报, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [12] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [13] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [14] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [15] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [16] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [17] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [18] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [19] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
计量
  • 文章访问数:  1094
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-10-11
  • 上网日期:  2024-10-18
  • 刊出日期:  2024-10-20

/

返回文章
返回