搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩展量子阱中负离子的光剥离动力学

唐田田 姚建刚

引用本文:
Citation:

扩展量子阱中负离子的光剥离动力学

唐田田, 姚建刚
cstr: 32037.14.aps.74.20240618

Photodetachment dynamics of negative ions in a quantum well with two expanding walls

TANG Tiantian, YAO Jiangang
cstr: 32037.14.aps.74.20240618
PDF
HTML
导出引用
  • 本研究运用经典闭合轨道理论(COT)深入探究了扩展量子阱中的氢负离子的光剥离动力学, 并推导出了相应的光剥离截面(PCS)表达式. 由于量子囚禁效应, 剥离截面上出现一个与量子阱有关的振荡因子. 结果显示光剥离截面的振荡因子对扩展量子阱的阱壁速率的依赖极为敏感: 当量子阱处于静态时, 光剥离截面呈现出规则的锯齿状结构. 当阱壁开始移动后, 这种规则的锯齿结构变得不规则. 随着阱壁移动速率的增大, PCS中的振荡结构变化复杂. 此外光剥离截面中的振荡还与氢负离子与两个运动阱壁之间的初始距离即阱宽紧密相关: 阱宽越窄, 电子被局域的空间越狭小, 电子受到的量子约束越强, 截面上的振荡振幅越大, 当阱宽增大时, 电子受到的量子约束效应就会减弱, 当阱宽增大到一定程度时, 量子阱不再体现出明显的量子约束效应, 光剥离截面趋向光滑背景项. 因此, 通过调整量子阱的初始尺寸、量子阱的扩展速率可实现对扩展量子阱中氢负离子光剥离截面的精确调控. 本研究所揭示的现象颇具趣味性, 且所采用的方法具有普适性, 可为未来针对更复杂动态量子阱中光剥离截面的研究提供指导.
    This work is to investigate the photo-detachment cross-section (PCS) of anions in an expanding quantum well formed by two moving elastic walls. Through the study of the closed orbits of the detached electrons, we derive the analytical expression for the period of these closed orbits. We utilize the classical closed-orbit theory (COT) to deeply explore and derive the PCS of this system, which is a superposition of a smooth background term and an oscillatory term caused by collisions between electrons and the two elastic walls of the quantum well. The calculation results show that the oscillation amplitude of the photo-detachment cross-section is highly sensitive to the wall velocity of the extended quantum well. When the quantum well is static, the photo-detachment cross-section exhibits a regular saw-tooth structure. As the walls begin to move, this regular saw-tooth structure becomes irregular. As the wall velocity increases, the oscillation structure within the PCS becomes increasingly complex. Furthermore, the photo-detachment cross-section is closely related to the initial distance between the negative hydrogen ion and the two moving walls, known as the well width. And through calculations of two different scenarios involving extended quantum wells, we find that for an asymmetrically expanding quantum well, the effect of moving walls on anionic PCS is more significant than for a symmetrically expanding quantum well. The research findings also reveal that as the well width narrows, the localized space for electrons becomes smaller, leading to stronger quantum confinement and an increase in the oscillation amplitude across the cross-section. As the well width increases, the quantum confinement effect on the electrons weakens, resulting in a decrease in the oscillation amplitude across the cross-section. When the well width reaches a certain level, the quantum well no longer exhibits significant quantum confinement effects, and the photo-detachment cross-section tends to approach a smooth background term. Therefore, precise control of the photo-detachment cross-section of negative hydrogen ions in an expanding quantum well formed by two moving elastic walls can be achieved by adjusting the initial size of the quantum well and the expansion speed of the quantum well. The phenomena revealed in this study are quite intriguing, and the methods employed are universal, providing guidance for future studying the photo-detachment cross-sections in more complex dynamic quantum wells. The findings of this study have significant reference value in the field of surface physics, enriching our understanding of the photo-detachment dynamics of anions in moving quantum wells, and they also provide a theoretical basis and guidance for future experimental research on the photo-detachment dynamics of anions in dynamic quantum wells.
      通信作者: 唐田田, tangtiantian198512@163.com
    • 基金项目: 山东省自然科学基金重点项目(批准号: ZR2020KE012)和山东省高等学校科技计划(批准号: J16LJ51)资助的课题.
      Corresponding author: TANG Tiantian, tangtiantian198512@163.com
    • Funds: Project supported by the Key Programm of Natural Science Foundation of Shandong Province, China (Grant No. ZR2020KE012) and the Higher Education Science and Technology Program of Shandong Province, China (Grant No. J16LJ51).
    [1]

    Milner V, Hanssen J L, Campbell W C, Raizen M G 2001 Phys. Rev. Lett. 86 1514Google Scholar

    [2]

    Kaplan A, Friedman N, Andersen M, Davidson N 2001 Phys. Rev. Lett. 87 274101Google Scholar

    [3]

    Andersen M F, Kaplan A, Friedman N, Davidson N 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2183Google Scholar

    [4]

    Friedman N, Kaplan A, Davidson N 2002 Adv. At. Mol. Opt. Phys. 48 99

    [5]

    Stone A D 2010 Nature 465 10Google Scholar

    [6]

    Chuu D S, Hsiao C M, Mei W N 1992 Phys. Rev. B 46 3898Google Scholar

    [7]

    Du M L Delos J B 1988 Phys. Rev. A 38 1896Google Scholar

    [8]

    Du M L 1989 Phys. Rev. A 40 4983Google Scholar

    [9]

    Du M L, Delos J B 1987 Phys. Rev. Lett. 58 1731Google Scholar

    [10]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1913Google Scholar

    [11]

    Du M L, Delos J B 1989 Phys. Rev. A 134 476

    [12]

    Yang G C, Rui K K, Zheng Y Z 2009 Physica B: Condens. Matter. 404 1576Google Scholar

    [13]

    Zhao H J, Ma Z J, Du M L 2015 Physica B: Condens. Matter. 466 54Google Scholar

    [14]

    Du M L 2006 Eur. Phys. J. D 38 533Google Scholar

    [15]

    Zhao H J, Du M L 2009 Phys. Rev. A 79 023408Google Scholar

    [16]

    Wang D H, Li S S, Wang Y H, Mu H F 2012 J. Phys. Soc. Jpn. 81 114301Google Scholar

    [17]

    Novick J, Delos J B 2012 Phys. Rev. E 85 016206Google Scholar

    [18]

    唐田田, 王德华, 黄凯云, 王姗姗 2012 物理学报 61 063202Google Scholar

    Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202Google Scholar

    [19]

    唐田田, 王德华, 黄凯云 2011 物理学报 60 053203Google Scholar

    Tang T T, Wang D H, Huang K Y 2011 Acta Phys. Sin. 60 053203Google Scholar

    [20]

    唐田田, 张朝民, 张敏 2013 物理学报 62 123201Google Scholar

    Tang T T, Zhang C M, Zhang M 2013 Acta Phys. Sin. 62 123201Google Scholar

    [21]

    Wang D H 2014 Chin. J. Phys. 52 138Google Scholar

    [22]

    Tang T T, Zhu Z L, Yao J G, Wang D H 2017 Can. J. Phys. 95 38Google Scholar

    [23]

    唐田田, 朱子亮, 姚建刚 2016 光子学报 45 1202002Google Scholar

    Tang T T, Zhu Z L, Yao J G 2016 Acta Photonica Sin. 45 1202002Google Scholar

    [24]

    Afaq A, Azmat I, Amin U R, Naveed K, Ansari M M 2016 Braz. J. Phys. 46 489Google Scholar

    [25]

    Zhao H J, Du M L 2018 Physica B: Condens. Matter. 530 121

    [26]

    Wang D H, Pang Z H, Zhuang K Z, Li Y F, Xie L 2017 Prama. J. Phys. 89 71Google Scholar

    [27]

    Azmat I, Kiran H, Sana M, Saba J, Afaq A 2019 Chin. Phys. B 28 023201Google Scholar

    [28]

    李洋阳, 孙世艳, 赵海军 2019 原子与分子物理学报 36 799Google Scholar

    Li Y Y, Sun S Y, Zhao H J 2019 J. Atom. Mol. Phys. 36 799Google Scholar

    [29]

    Tong S, Wang D H, Sun X Y 2021 Indian J. Phys. 95 551Google Scholar

    [30]

    Wang D H 2021 Z. Naturforsch. A. 76 407

    [31]

    Feng W, Deng D 2021 Proceeding of the 2021 International Conference on Management of Data New York, USA, June 20–25, 2021 p541

    [32]

    唐田田, 祝庆利 2021 原子与分子物理学报 38 053001Google Scholar

    Tang T T, Zhu Q L 2021 J. Atom. Mol. Phys. 38 053001Google Scholar

    [33]

    Welander J, Navarro Navarrete J E, Rohlén J, Leopold T, Thomas R D, Pegg D J, Hanstorp D 2022 Rev. Sci. Instrum. 93 065004Google Scholar

    [34]

    Zhang L, Li C, Wang X, Feng W, Yu Z, Chen Q, Leng J, Guo M, Yang P 2023 IEEE International Parallel and Distributed Processing Symposium Milan, Italy, May 29–June 2, 2023 p864

    [35]

    Fermi E 1949 Phys. Rev. 75 1169Google Scholar

    [36]

    Ulam S M, 1961 Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability University of California Berkeley, June 20–30, 1961 p315

    [37]

    Dosecher S W, Rice M H 1969 Am. J. Phys. 37 1246Google Scholar

    [38]

    da Luz M G E, Cheng B K 1992 J. Phys. A: Math. Gen. 25 L1043Google Scholar

    [39]

    Martino S D, Anza F, Facchi P, Kossakowski A, Marmo G, Messina A, Militello B, Pascazio S 2013 J. Phys. A: Math. Theor. 46 365301Google Scholar

    [40]

    Wang D H 2018 Phys. Rev. A 98 053419Google Scholar

    [41]

    Yang B C, Delos J B, Du M L 2014 Phys. Rev. A 89 013417Google Scholar

  • 图 1  扩展量子阱中氢负离子光剥离理论模型示意图

    Fig. 1.  Schematic diagram of theoretical model of hydrogen negative ion photodetachment in the expanding quantum wells.

    图 2  扩展量子阱中剥离电子的一些经典轨迹, 剥离电子能量$ E $ = 0.246 eV, 氢负离子到上阱壁的初始距离$ {Z_{10}} $ = 100 a.u., 到下阱壁初始距离$ {Z_{20}} $ = 200 a.u., 两个阱壁移动速率为$ v $ = 0.001 a.u., 两种不同的线表示从原点发射的不同方向, 电子的出射方向如图

    Fig. 2.  Some typical classical trajectories of the detached electron in the expanding quantum wells. The electron energy $ E $ = 0.246 eV. The initial distances from the hydrogen negative ion to the upper and lower surface are $ {Z_{10}} $ = 100 a.u. and $ {Z_{20}} $ = 200 a.u. The surfaces are moving at a speed of $ v $ = 0.001 a.u. Different lines denote different electron trajectories. The initial outgoing angles of the electron trajectory are given in the plot.

    图 3  扩展量子阱中剥离电子的一些典型的闭合轨道, 电子能$ E = 0.246$ eV, 负离子到上下阱壁的初始距离分别为$ {Z_{10}}= 100 $ a.u., $ {Z_{20}} = 200$ a.u., 阱壁以$ v =0.001$ a.u.的速率移动

    Fig. 3.  Some typical closed orbits of the detached electron in the expanding quantum wells. The electron energy $ E=0.246 $ eV. The initial distances from the negative ion to the upper and lower surfaces are: $ {Z_{10}}= 100 $ a.u., $ {Z_{20}} = 200$ a.u.. The surfaces are moving at a speed of $ v = 0.001$ a.u.

    图 4  离子处于不对称扩展量子阱中的剥离电子的闭合轨道

    Fig. 4.  The closed orbits of detached electrons in asymmetrically expanding quantum wells.

    图 5  离子处于对称扩展量子阱中的剥离电子的闭合轨道

    Fig. 5.  Closed orbits of stripped electrons in a symmetric expanding quantum well.

    图 6  系统PCS随量子阱弹性阱壁运动速率的变化, 当两阱壁的初始距离关于氢负离子对称时, $ {Z_{10}} = {Z_{20}} = 100 $ a.u. (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u.

    Fig. 6.  Variation of the PCS with the speed of the moving walls in the quantum well. The initial distances between the H and the two walls are equal, $ {Z_{10}} = {Z_{20}} = 100 $a.u.: (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u..

    图 9  不同阱壁速度时, 总PCS中的振荡因子$ M(E, v) $与扩展量子阱中弹性壁的速率的关系, 红线是对称扩展量子阱中的因子$ M(E, v) $, 离子与阱壁的初始距离 $ {Z_{10}} $ = $ {Z_{20}} $ = 100 a.u., 黑线是不对称扩展量子阱中的因子$ M(E, v) $, 离子与阱壁的初始距离分别为$ {Z_{10}} $ = 100 a.u., $ {Z_{20}} $ = 300 a.u. (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u.

    Fig. 9.  Dependence of the modulating factor $ M(E, v) $in the total PCS on the speed of the moving walls in the expanding quantum well, the red line is the factor $ M(E, v) $ in the symmetric expanding quantum well, $ {Z_{10}} $ = $ {Z_{20}} $ = 100 a.u., and the black line is the case in the asymmetric expanding quantum well, $ {Z_{10}} $ = 100 a.u., $ {Z_{20}} $ = 300 a.u.: (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u..

    图 7  对称扩展量子阱中阱壁运动速率不同时的PCS比较, 两阱壁的初始距离关于氢负离子对称, $ {Z_{10}} = {Z_{20}} = $$ 100 $a.u. (a) $ v $ = 0.005 a.u.; (b) $ v $ = 0.01 a.u.

    Fig. 7.  Comparison of the PCS in the moving quantum well at different speed of the moving walls. The initial distances between the H and the two walls are equal, $ {Z_{10}} = $$ l {Z_{20}} = 100 $a.u.: (a) $ v $ = 0.005 a.u, (b) $ v $ = 0.01 a.u..

    图 8  阱壁的速率不同时, 氢负离子在不对称扩展量子阱中的PCS, 两阱壁的初始距离关于氢负离子不对称, $ {Z_{10}} $ = 100 a.u., $ {Z_{20}} $ = 300 a.u. (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u.

    Fig. 8.  Variation of the PCS with different speeds of the moving walls in the quantum well, the initial distances between the H and the two walls are not equal, $ {Z_{10}} $ = 100 a.u., $ {Z_{20}} $ = 300 a.u.: (a) $ v $ = 0 a.u.; (b) $ v $ = 0.005 a.u.; (c) $ v $ = 0.01 a.u.; (d) $ v $ = 0.03 a.u..

    图 10  光剥离截面对下阱壁-离子初始距离的依赖关系, 两阱壁的运动速率为v = 0.001 a.u., 固定上阱壁的初始距离为$ {Z_{10}} $ = 100 a.u., 下阱壁的初始距离 (a) $ {Z_{20}} $ = 100 a.u.; (b) $ {Z_{20}} $ = 200 a.u.; (c) $ {Z_{20}} $ = 500 a.u.; (d) $ {Z_{20}} $ = 1000 a.u.

    Fig. 10.  Dependence of the PCS on the initial distance from the ion to the lower wall. Suppose that the two walls moves at a speed of v = 0.001 a.u., the initial distance between H ion and the upper surface is fixed to be $ {Z_{10}} $ = 100 a.u., The initial distance from the ion to the lower wall: (a) $ {Z_{20}} $ = 100 a.u.; (b) $ {Z_{20}} $ = 200 a.u.; (c) $ {Z_{20}} $ = 500 a.u.; (d) $ {Z_{20}} $ = 1000 a.u..

    图 11  振荡截面$ {\sigma _{{\text{osc}}}} $与离子到下阱壁的初始距离$ {Z_{20}} $以及扩展量子阱阱壁的移动速率的关系, 上阱壁的初始距离$ {Z_{10}} $ = 100 a.u., 两阱壁的移动速率为$ v $ = 0.005 a.u.

    Fig. 11.  Dependence of the oscillating cross section $ {\sigma _{{\text{osc}}}} $ on the initial distance from the ion to the lower wall $ {Z_{20}} $ and the moving speed of the walls $ v $in the expanding quantum well. The initial position of the upper wall is at $ {Z_{10}} $ = 100 a.u.. Both walls move at a speed of $ v $ = 0.005 a.u..

  • [1]

    Milner V, Hanssen J L, Campbell W C, Raizen M G 2001 Phys. Rev. Lett. 86 1514Google Scholar

    [2]

    Kaplan A, Friedman N, Andersen M, Davidson N 2001 Phys. Rev. Lett. 87 274101Google Scholar

    [3]

    Andersen M F, Kaplan A, Friedman N, Davidson N 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2183Google Scholar

    [4]

    Friedman N, Kaplan A, Davidson N 2002 Adv. At. Mol. Opt. Phys. 48 99

    [5]

    Stone A D 2010 Nature 465 10Google Scholar

    [6]

    Chuu D S, Hsiao C M, Mei W N 1992 Phys. Rev. B 46 3898Google Scholar

    [7]

    Du M L Delos J B 1988 Phys. Rev. A 38 1896Google Scholar

    [8]

    Du M L 1989 Phys. Rev. A 40 4983Google Scholar

    [9]

    Du M L, Delos J B 1987 Phys. Rev. Lett. 58 1731Google Scholar

    [10]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1913Google Scholar

    [11]

    Du M L, Delos J B 1989 Phys. Rev. A 134 476

    [12]

    Yang G C, Rui K K, Zheng Y Z 2009 Physica B: Condens. Matter. 404 1576Google Scholar

    [13]

    Zhao H J, Ma Z J, Du M L 2015 Physica B: Condens. Matter. 466 54Google Scholar

    [14]

    Du M L 2006 Eur. Phys. J. D 38 533Google Scholar

    [15]

    Zhao H J, Du M L 2009 Phys. Rev. A 79 023408Google Scholar

    [16]

    Wang D H, Li S S, Wang Y H, Mu H F 2012 J. Phys. Soc. Jpn. 81 114301Google Scholar

    [17]

    Novick J, Delos J B 2012 Phys. Rev. E 85 016206Google Scholar

    [18]

    唐田田, 王德华, 黄凯云, 王姗姗 2012 物理学报 61 063202Google Scholar

    Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202Google Scholar

    [19]

    唐田田, 王德华, 黄凯云 2011 物理学报 60 053203Google Scholar

    Tang T T, Wang D H, Huang K Y 2011 Acta Phys. Sin. 60 053203Google Scholar

    [20]

    唐田田, 张朝民, 张敏 2013 物理学报 62 123201Google Scholar

    Tang T T, Zhang C M, Zhang M 2013 Acta Phys. Sin. 62 123201Google Scholar

    [21]

    Wang D H 2014 Chin. J. Phys. 52 138Google Scholar

    [22]

    Tang T T, Zhu Z L, Yao J G, Wang D H 2017 Can. J. Phys. 95 38Google Scholar

    [23]

    唐田田, 朱子亮, 姚建刚 2016 光子学报 45 1202002Google Scholar

    Tang T T, Zhu Z L, Yao J G 2016 Acta Photonica Sin. 45 1202002Google Scholar

    [24]

    Afaq A, Azmat I, Amin U R, Naveed K, Ansari M M 2016 Braz. J. Phys. 46 489Google Scholar

    [25]

    Zhao H J, Du M L 2018 Physica B: Condens. Matter. 530 121

    [26]

    Wang D H, Pang Z H, Zhuang K Z, Li Y F, Xie L 2017 Prama. J. Phys. 89 71Google Scholar

    [27]

    Azmat I, Kiran H, Sana M, Saba J, Afaq A 2019 Chin. Phys. B 28 023201Google Scholar

    [28]

    李洋阳, 孙世艳, 赵海军 2019 原子与分子物理学报 36 799Google Scholar

    Li Y Y, Sun S Y, Zhao H J 2019 J. Atom. Mol. Phys. 36 799Google Scholar

    [29]

    Tong S, Wang D H, Sun X Y 2021 Indian J. Phys. 95 551Google Scholar

    [30]

    Wang D H 2021 Z. Naturforsch. A. 76 407

    [31]

    Feng W, Deng D 2021 Proceeding of the 2021 International Conference on Management of Data New York, USA, June 20–25, 2021 p541

    [32]

    唐田田, 祝庆利 2021 原子与分子物理学报 38 053001Google Scholar

    Tang T T, Zhu Q L 2021 J. Atom. Mol. Phys. 38 053001Google Scholar

    [33]

    Welander J, Navarro Navarrete J E, Rohlén J, Leopold T, Thomas R D, Pegg D J, Hanstorp D 2022 Rev. Sci. Instrum. 93 065004Google Scholar

    [34]

    Zhang L, Li C, Wang X, Feng W, Yu Z, Chen Q, Leng J, Guo M, Yang P 2023 IEEE International Parallel and Distributed Processing Symposium Milan, Italy, May 29–June 2, 2023 p864

    [35]

    Fermi E 1949 Phys. Rev. 75 1169Google Scholar

    [36]

    Ulam S M, 1961 Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability University of California Berkeley, June 20–30, 1961 p315

    [37]

    Dosecher S W, Rice M H 1969 Am. J. Phys. 37 1246Google Scholar

    [38]

    da Luz M G E, Cheng B K 1992 J. Phys. A: Math. Gen. 25 L1043Google Scholar

    [39]

    Martino S D, Anza F, Facchi P, Kossakowski A, Marmo G, Messina A, Militello B, Pascazio S 2013 J. Phys. A: Math. Theor. 46 365301Google Scholar

    [40]

    Wang D H 2018 Phys. Rev. A 98 053419Google Scholar

    [41]

    Yang B C, Delos J B, Du M L 2014 Phys. Rev. A 89 013417Google Scholar

  • [1] 聂敏, 刘广腾, 杨光, 裴昌幸. 基于最少中继节点约束的量子VoIP路由优化策略. 物理学报, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [2] 寻大毛, 欧阳涛, 谈荣日, 刘慧宣. 悬链曲面上的点粒子动力学及扩展空间约束系统量子化. 物理学报, 2015, 64(24): 240305. doi: 10.7498/aps.64.240305
    [3] 陈召杭, 王德华, 程绍昊. 氢负离子在梯度电场中光剥离的波包动力学研究. 物理学报, 2015, 64(23): 233201. doi: 10.7498/aps.64.233201
    [4] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [5] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [6] 唐田田, 王德华, 黄凯云, 王姗姗. 氢负离子在磁场和电介质表面附近光剥离的研究. 物理学报, 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [7] 蔡春锋, 吴惠桢, 斯剑霄, 孙艳, 戴宁. MBE生长PbSe/PbSrSe量子阱结构的光致中红外发光的研究. 物理学报, 2009, 58(5): 3560-3564. doi: 10.7498/aps.58.3560
    [8] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [9] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [10] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究. 物理学报, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [11] 陈贵宾, 陆卫, 缪中林, 李志锋, 蔡炜颖, 沈学础, 陈昌明, 朱德彰, 胡钧, 李明乾. 离子注入诱导量子阱界面混合效应的光致荧光谱研究. 物理学报, 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
    [12] 邵常贵, 肖俊华, 邵亮, 邵丹, 陈贻汉, 潘贵军. 扩展的纽结量子引力态. 物理学报, 2002, 51(7): 1467-1474. doi: 10.7498/aps.51.1467
    [13] 缪中林, 陈平平, 陆卫, 徐文兰, 李志锋, 蔡玮颖. GaAs/Al1-xAs表面单量子阱原位光调制反射光谱研究. 物理学报, 2001, 50(1): 111-115. doi: 10.7498/aps.50.111
    [14] 李乙钢, 郭 儒, 金 鹏, 潘士宏. 光折变多量子阱光学寻址空间光调制器的理论分析. 物理学报, 1999, 48(9): 1682-1690. doi: 10.7498/aps.48.1682
    [15] 金世荣, 李爱珍, 褚君浩, 陈诗伟. 量子阱中光生载流子的瞬态衰减过程与发光效率. 物理学报, 1997, 46(5): 1001-1010. doi: 10.7498/aps.46.1001
    [16] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究. 物理学报, 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [17] 程文芹, 梅笑冰, 周均铭, 刘玉龙, 朱恪. 掺铍GaAs量子阱的光致荧光. 物理学报, 1993, 42(5): 864-866. doi: 10.7498/aps.42.864
    [18] 池坚刚, 赵文琴, 李爱珍. MBE GaAs1-xSbx/GaAs应变层量子阱的光调制反射光谱. 物理学报, 1989, 38(10): 1710-1716. doi: 10.7498/aps.38.1710
    [19] 贾惟义, 鲁志东, 黄绮, 周均铭, 李永康, 王彦云. GaAs/GaAlAs多量子阱的光致荧光诊断. 物理学报, 1988, 37(6): 906-915. doi: 10.7498/aps.37.906
    [20] 夏建白, 黄昆. 电场下量子阱的子能带和光跃迁. 物理学报, 1988, 37(1): 1-10. doi: 10.7498/aps.37.1
计量
  • 文章访问数:  276
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 修回日期:  2024-12-01
  • 上网日期:  2024-12-06
  • 刊出日期:  2025-01-20

/

返回文章
返回