-
压电振动传感器与其他振动传感技术相比具有频率范围宽、动态范围大、结构简单、工作可靠、体积小等优点, 在核电行业、航空航天、轨道交通及国防军工等多个领域有着广泛的应用. 然而, 随着振动测试技术的飞速发展以及应用领域的不断拓宽, 对压电振动传感器在极端环境中长时服役的可靠性提出了更高要求, 如何提高压电振动传感器的服役温度满足极端环境下的应用需求是目前迫切解决的问题. 本文综述了高温压电传感技术应用场景和工作原理, 讨论了常见的高温压电陶瓷和晶体材料, 系统地总结了现有的压电振动传感器工作模式、不同类型压电振动传感器结构及传感器振动校准装置, 重点介绍了近年来国内外高温振动传感器的研究进展. 在此基础上, 探讨了高温压电振动传感器当前面临的问题及未来发展趋势, 为开发下一代极端环境应用的超高温振动传感器提供了思路, 有望促进国内高温压电振动传感技术的进一步研究.
Vibration sensor technology, especially piezoelectric vibration sensor, has been widely applied in various fields. This type of sensor has excellent dynamic response, linearity, wide bandwidth, high sensitivity, large temperature range, simple structure, and stable performance, so it can be applied in many cases such as nuclear power, aerospace, rail transportation, and defense industries. However, most of piezoelectric vibration sensors are limited to operating temperatures below 500 ℃, which restricts their applications in extreme high-temperature environments encountered in nuclear reactors, aircraft engines, missile systems, and internal combustion engines. How to improve the operating temperature of piezoelectric vibration sensors to meet their application requirements in extreme environments is an urgent problem that needs to be solved. High-temperature piezoelectric materials, as the core components of piezoelectric vibration sensors, play a decisive role in determining the overall performance of the sensor. Common high-temperature piezoelectric materials include piezoelectric ceramics and single crystals. To ensure stable operation and excellent sensitivity in extreme environments, it is essential to select piezoelectric materials with high Curie temperature, high piezoelectric coefficient, high resistivity, and low dielectric loss as the sensing elements of the sensor. There are usually three main types of piezoelectric vibration sensors: bending, compression, and shear. In addition to selecting the suitable piezoelectric material, it is also crucial to choose the optimal sensor structure suitable to the specific application scenarios. In view of the urgent demand for ultrahigh-temperature vibration sensors, this paper mainly reviews the current research progress of high-temperature piezoelectric materials and high-temperature piezoelectric vibration sensors, summarizes the structures, advantages and disadvantages, and application scenarios of different types of high-temperature piezoelectric vibration sensors, explores the current problems and future development trends of high-temperature piezoelectric vibration sensors, and provides ideas for developing the next-generation ultrahigh temperature vibration sensors for extreme environmental applications, which is expected to promote the further development of high-temperature piezoelectric vibration sensing technology. -
Keywords:
- vibration sensors /
- high-temperature piezoelectric materials /
- vibration modes /
- vibration calibration devices
[1] 吕泉 2006现代传感器原理及应用(北京: 清华大学出版社)
Lü Q 2006 Principles and Applications of Modern Sensors (Beijing: Tsinghua University Press
[2] Giuliani A, Drera L, Arancio D, Mukhopadhyay B, Ngo H D 2014 Procedia Eng. 87 720Google Scholar
[3] Vandeparre H, Watson D, Lacour S 2013 Appl. Phys. Lett. 103 20Google Scholar
[4] Tavakkoli H, Momen H G, Sani E A, Yazgi M 2017 proceedings of the 2017 10th International Conference on Electrical and Electronics Engineering Bursa, Turkey, November 30–December 02, 2017 p459
[5] Yao Z, Liang T, Jia P G, Hong Y P, Qi L, Lei C, Zhang B, Xiong J J 2016 Sensors 16 913Google Scholar
[6] Roessig T A, Howe R T, Pisano A P, Smith J H 1997 proceedings of the Proceedings of International Solid State Sensors and Actuators Conference Chicago, United States, June 19, 1997 p859
[7] Kim N I, Chang Y L, Chen J, Barbee T, Wang W, Kim J Y, Kwon M K, Shervin S, Moradnia M, Pouladi S, Khatiwada D, Selvamanickam V, Ryou J H 2020 Sens. Actuators, A 305 111940Google Scholar
[8] Jiang X N, Kim K, Zhang S J, Johnson J, Salazar G 2013 Sensors 14 144Google Scholar
[9] Yu F P, Zhang S J, Zhao X, Yuan D R, Qin L F, Wang Q M, Shrout T R 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 868Google Scholar
[10] Shrout T R, Yu F P, Zhang S J, Wang Q M, Fei Y, Chai B 2011 proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings San Francisco, United States, May 1–5, 2011 p82
[11] Yang Y, Wang M H, Yu Z H, Yu Q X, Chen K P 2021 Sens. Actuator A-Phys. 321 112562Google Scholar
[12] Yu F P, Duan X, Zhang S J, Lu Q, Zhao X 2014 Crystals 4 241Google Scholar
[13] 袁宇鹏, 梅勇, 齐良才, 张祖伟, 李小飞, 王登攀 2022 压电与声光 44 940Google Scholar
Yuan Y P, Mei Y, Qi L C, Zhang Z W, Li X F, Wang P D 2022 Piezoelectrics & Acoustooptics 44 940Google Scholar
[14] 吴宗岱 1988 实验力学 3 329
Wu Z D 1988 J. Exp. Mech. 3 329
[15] 张永峰 2003 硕士学位论文 (西安: 西北工业大学)
Zhang Y F 2003 M. S. Thesis (Xi'an: Northwestern Polytechnical University
[16] Hall C L, Leary S, Lapierre L, Hess A, Bladen K 2001 proceedings of the 2001 IEEE Aerospace Conference Proceedings Montana, United States, March 10–17, 2001 p3069
[17] 张福学 1990 航空电子技术 1 1
Zhang X F 1990 Avionics Technol. 1 1
[18] 周俊 2016 硕士学位论文 (武汉: 华中科技大学)
Zhou J 2016 M. S. Thesis (Wuhan: Huazhong University of Science and Technology
[19] 吴大方, 赵寿根, 潘兵, 王岳武, 王杰, 牟朦, 朱林 2013 力学学报 45 598Google Scholar
Wu D F, Zhao S G, Pan B, Wang Y W, Wang J, Mou M, Zhu L 2013 Acta Mech. Sin. 45 598Google Scholar
[20] Crawley E F 1994 AIAA J. 32 1689Google Scholar
[21] High-temperature modal survey of a hot-structure control surface, Spivey N D https://ntrs.nasa.gov/citations/20110023803 [2024-6-1]
[22] 孙明晓, 季俊云, 史岩峰, 陈玉玲, 张巧寿 2019 强度与环境 49 54
Sun M X, Ji J Y, Shi Y F, Chen Y L, Zhang Q S 2019 Struct. Environ. Eng. 49 54
[23] Turner R, Fuierer P A, Newnham R, Shrout T R 1994 Appl. Acoust. 41 299Google Scholar
[24] Fleming W J 2001 IEEE Sens. J. 1 296Google Scholar
[25] 袁宇鹏, 王登攀, 李小飞, 李军, 胡杨, 曾翔豹, 王音心, 张祖伟 2019 压电与声光 41 49Google Scholar
Yuan Y P, Wang D P, Li X F, Li J, Hu Y, Zeng X B, Wang Y X, Zhang Z W 2019 Piezoelectrics & Acoustooptics 41 49Google Scholar
[26] Bulst W E, Fischerauer G, Reindl L 1998 proceedings of the IECON'98 Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society Aachen, Germany, August 31–September 04, 1998 p265
[27] 王寿荣 2000 硅微型惯性器件理论及应用 (南京: 东南大学出版社)
Wang S R 2000 Theory and Applications of Silicon Miniature Inertial Devices (Nanjing: Southeast University Press
[28] Kazys R, Vaskeliene V 2021 Sensors 21 3200Google Scholar
[29] Meng Y F, Chen G Q, Huang M Y 2022 Nanomaterials 12 1171Google Scholar
[30] Yu F P, Duan X L, Zhang S J, Yu Y G, Ma T F, Zhao X T 2012 proceedings of the 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications Shanghai, China, November 23–25 2012 p293
[31] 王天资, 周志勇, 李伟, 董显林, 张磊 2020 传感器与微系统 39 1Google Scholar
Wang T Z, Zhou Z Y, Li W, Dong X L, Zhang L 2020 Transducer Microsyst. Technol. 39 1Google Scholar
[32] 单成祥 1999 传感器的理论与设计基础及其应用 (北京: 国防工业出版社)
Shan C X 1999 Theoretical and Design Basis of Sensors and their Applications (Beijing: National Defense Industry Press
[33] Bilgunde P N, Bond L J 2018 Ultrasonics 87 103Google Scholar
[34] Yu J C, Lan C B 2001 Sens. Actuator. A 88 178Google Scholar
[35] Kim K, Zhang S J, Salazar G, Jiang X N 2012 Sens. Actuator, A 178 40Google Scholar
[36] 王丹钰, 王安玖, 王五松, 李荔, 张垚宾, 翟继卫 2021 陶瓷学报 42 376Google Scholar
Wang D Y, Wang A J, Wang W S, Li L, Zhang Y B, Zhai J W 2021 J. Ceram. 42 376Google Scholar
[37] 栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (北京: 北京大学出版社)
Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Transducer Arrays (Beijing: Peking University Press
[38] 李庆利, 曹建新, 赵丽媛, 吕剑明, 范冠锋 2008 化工进展 27 16Google Scholar
Li Q L, Cao J X, Zhao L Y, Lv J M, Fan G F 2008 Chem. Ind. Eng. Prog. 27 16Google Scholar
[39] Zhang F Q, Li Y X 2014 J. Inorg. Mater. 29 449Google Scholar
[40] Chen L, Liu H, Qi H, Chen J 2022 Prog. Mater. Sci. 127 100944Google Scholar
[41] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar
[42] Kumar A, Bhanu Prasad V V, James Raju K C, James A R 2015 J. Mater. Sci. -Mater. Electron. 26 3757Google Scholar
[43] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar
[44] Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023 Prog. Mater. Sci. 132 101026Google Scholar
[45] Zou T T, Wang X H, Wang H, Zhong C F, Li L T, Chen I W 2008 Appl. Phys. Lett. 93 19Google Scholar
[46] Zhao H Y, Hou Y D, Yu X L, Zheng M P, Zhu M K 2018 J. Appl. Phys. 124 19Google Scholar
[47] Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V, Borisevich A Y 2013 Adv. Mater. 25 2497Google Scholar
[48] Dho J H, Qi X D, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445Google Scholar
[49] Leontsev S O, Eitel R E 2009 J. Am. Ceram. Soc. 92 2957Google Scholar
[50] Kim S, Miyauchi R, Sato Y, Nam H, Fujii I, Ueno S 2023 Adv. Mater. 35 11Google Scholar
[51] Yang H B, Sun Y Y, Gao H Y, Zhou X Y, Tan H, Shu C 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 3102Google Scholar
[52] Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H 2015 Adv. Mater. 27 6976Google Scholar
[53] Hu H, Zhuang J, Weng Y X, Zhang N, Wang B Y, Wang D W, Feng G B, Ren W 2023 J. Eur. Ceram. Soc. 43 6815Google Scholar
[54] Hu W, Tan X L, Rajan K 2011 J. Eur. Ceram. Soc. 31 801Google Scholar
[55] Sun S D, Liu Y, Zhang Y Y, Wang L, Huo C R, Deng S Q, Liu H, Ren Y, Wu J, Oi H, Chen J 2022 Acta Mater. 239 118285Google Scholar
[56] Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, ROEDEL J 2013 Adv. Funct. Mater. 23 4079Google Scholar
[57] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[58] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[59] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[60] Egerton L, Dillon D M 1959 J. Am. Ceram. Soc. 42 438Google Scholar
[61] Zuo R Z, Fu J 2011 J. Am. Ceram. Soc. 94 1467Google Scholar
[62] Zhang B Y, Wu J G, Cheng X J, Wang X P, Xiao D Q, Zhu J G, Wang X J, Lou X J 2013 ACS Appl. Mater. Interfaces 5 7718Google Scholar
[63] Wu J G, Wang X P, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G, Luo X J 2014 J. Appl. Phys. 115 114104Google Scholar
[64] Rubio-Marcos F, Lopez-Juarez R, Rojas-Hernandez R E, del Campo A, Razo-Perez N, Fernandez J F 2015 ACS Appl. Mater. Interfaces 7 23080Google Scholar
[65] 陈秀峰, 张大军 2014 现代技术陶瓷 4 28Google Scholar
Chen X F, Zhang D J 2014 Adv. Ceram. 4 28Google Scholar
[66] Chen J, Liu H H, Yu D Y, Li Q N, Yuan C L, Xu J W, Cheng S, Zhao J T, Zhou C R, Rao G H 2024 Chem. Eng. J. 480 148202Google Scholar
[67] 李月明, 张玉平, 廖润华, 程亮 2006 陶瓷学报 27 205
Li Y M, Zhang Y P, Liao R H, Chen L 2006 J. Ceram. 27 205
[68] Cai K, Jiang F, Deng P Y, Ma J T, Guo D 2015 J. Am. Ceram. Soc. 98 3165Google Scholar
[69] Zhao X M, Liu C, Zhang D N, Huang D, Liu K, Zhang H W 2022 Ceram. Int. 48 35461Google Scholar
[70] 周静, 赵然, 陈文 2005 陶瓷学报 26 202Google Scholar
Zhou J, Zhao R, Chen W 2005 J. Ceram. 26 202Google Scholar
[71] Fang R R, Zhou Z Y, Liang R H, Dong X L 2020 Ceram. Int. 46 23505Google Scholar
[72] Ray S, Günther E, Ritzhaupt-Kleissl H J 2000 J. Mater. Sci. 35 6221Google Scholar
[73] Vasant Kumar C, Sayer M, Pascual R 1992 Appl. Phys. Lett. 60 2207Google Scholar
[74] Jin R Q, Ren X D, Xu Z, Yan Y K 2023 Ceram. Int. 49 39516Google Scholar
[75] Hagh N M, Nonaka K, Allahverdi M, Safari A 2005 J. Am. Ceram. Soc. 88 3043Google Scholar
[76] Fang R R, Zhou Z Y, Liang R H, Dong X L 2021 Ceram. Int. 47 26942Google Scholar
[77] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[78] Chen H B, Zhai J W 2012 J. Electron. Mater. 41 2238Google Scholar
[79] Long C B, Fan H Q, Li M M 2013 Dalton Trans. 42 3561Google Scholar
[80] Li T, Li X L, Zhao Z H, Ji H M, Dai Y J 2015 Integr. Ferroelectr. 162 1Google Scholar
[81] Pan C B, Zhao G C, Li S M, Wang X L, Wang J M Z, Tao M, Zhang X K, Yang C, Xu J P, Yin W, Yin L H, Song W H, Tong P, Zhu X B, Yang J, Sun Y P 2022 J. Mater. Chem. C 10 15851Google Scholar
[82] Zhang H X 2007 proceedings of the 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara, Japan, May 27–31, 2007 p751
[83] Zhang S J, Alberta E, Eitel R E, Rehrig P W, Hackenberger W, Randall C A, Shrout T R 2005 proceedings of the Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, California, United States, March 07–10, 2005 p279
[84] Zhao H Y, Hou Y D, YU X L, Zheng M P, Zhu M K 2020 J. Mater. Chem. C 8 1562Google Scholar
[85] Zhang S J, Yu F P 2011 J. Am. Ceram. Soc. 94 3153Google Scholar
[86] Belavic D, Bradesko A, Zarnik M S, Rojac T 2015 Metrol. Meas. Syst. 22 331Google Scholar
[87] 龚美霞 2001 国外电子元器件 1 9
Gong M X 2001 Int. Electron. Ele 1 9
[88] Philippot E, Palmier D, Pintard M, Goiffon A 1996 J. Solid State Chem. 123 1Google Scholar
[89] London D 2011 Can. Mineral. 49 117Google Scholar
[90] Shen C Y, Zhang S J, Cao W W, Cong H J, Yu H H, Wang J Y, Zhang H J 2015 Appl. Phys. 117 064106Google Scholar
[91] Shen C Y, Zhang S J, Wang D L, Xu T X, Yu H H, Cao W W, Wang J Y, Zhang H J 2015 Crystengcomm 17 1791Google Scholar
[92] Takeda H, Hagiwara M, Noguchi H, Hoshina T, Takahashi T, Kodama N 2013 Appl. Phys. Lett. 102 242907Google Scholar
[93] Zhang Y Y, Yin X, Yu H H, Cong H J, Zhang H J, Wang J Y, Boughtont R I 2012 Cryst. Growth Des. 12 622Google Scholar
[94] Haines J, Cambon O, Prudhomme N, Fraysse G, Keen D A, Chapon L C, Tucker M G 2006 Phys. Rev. B 73 14103Google Scholar
[95] Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 1427Google Scholar
[96] Giurgiutiu V, Xu B L, Liu W P 2010 Struct. Health Monit. 9 513Google Scholar
[97] 陈林, 陈异, 肖定全, 朱建国 2005 四川大学学报 42 150
Chen L, Chen Y, Xiao D Q, Zhu J G 2005 J. Sichuan Univ. 42 150
[98] Bouchy S, Zednik R J, Bélanger P 2022 Materials 15 4716Google Scholar
[99] Kim N I, Yarali M, Moradnia M, Aqib M, Liao C H, AlQatari F, Nong M T, Li X H, Ryou J H 2023 Adv. Funct. Mater. 33 2212538Google Scholar
[100] Sotnikov A V, Schmidt H, Weihnacht M, Smirnova E P, Chemekova T Y, Makarov Y N 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 808Google Scholar
[101] 赵超亮, 宋波, 张幸红, 韩杰才 2012 材料导报 26 11
Zhao C L, Song B, Zhang X H, Han J C 2012 Mater. Rep. 26 11
[102] Oreshko A P, Ovchinnikova E N, Rogalev A, Wilhelm F, Mill B V, Dmitrienko V E 2018 J. Synchrotron Radiat. 25 222Google Scholar
[103] Bohm J, Chilla E, Flannery C, Fröhlich H J, Hauke T, Heimann R B, Hengst M, Straube U 2000 J. Cryst. Growth 216 293Google Scholar
[104] Sato J, Takeda H, Morikoshi H, Shimamura K, Rudolph P, Fukuda T 1998 J. Cryst. Growth 191 746Google Scholar
[105] Nakao H, Nishida M, Shikida T, Shimizu H, Takeda H, Shiosaki T 2006 J. Alloys Compd. 408 582Google Scholar
[106] Zhang S, Yoshikawa A, Kamada K, Frantz E, Xia R, Snyder D W, Fukuda T, Shrout T R 2008 Solid State Commun. 148 213Google Scholar
[107] Takeda H, Shimamura K, Chani V, Kato T, Fukuda T 1999 Cryst. Res. Technol. 34 1141Google Scholar
[108] Takeda H, Fukuda T, Kawanaka H, Onozato N 2001 J. Mater. Sci. -Mater. Electron. 12 199Google Scholar
[109] Ren C K, Yin L B, Wang S, Chen W R, Wang S, Xiong K N, Tu X N, Bao N Z, Zheng Y Q, Chen J, Shi E W 2024 J. Rare Earths (receivedGoogle Scholar
[110] Shen C Y, Zhang H J, Cong H J, Yu H H, Wang J Y, Zhang S J 2014 Appl. Phys. 116 4Google Scholar
[111] Taylor N T, Davies F H, Hepplestone S 2017 Mater. Res. Express 4 125904Google Scholar
[112] Zhong D G, Teng B, Kong W J, Ji S H, Zhang S M, Li J H, Cao L F, Jing H L, He L X 2017 J. Alloys Compd. 692 413Google Scholar
[113] Takeda H, Nakao H, Izukawa S, Shimizu H, Nishida T, Okamura S, Shiosaki T 2006 J. Alloys Compd. 408 474Google Scholar
[114] Fei Y, Chai B H, Ebbers C, Liao Z, Schaffers K I, Thelin P 2006 J. Cryst. Growth 290 301Google Scholar
[115] Zhang S J, Fei Y T, Frantz E, Snyder D W, Chai B H T, Shrout T R 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2703Google Scholar
[116] Yu F P, Zhang S J, Zhao X, Guo S Y, Duan X L, Yuan D R, Shrout T R 2011 J. Phys. D: Appl. Phys. 44 135405Google Scholar
[117] Zhang S J, Yu F P, Xia R, Fei Y T, Frantz E, Zhao X, Yuan D R, Chai B H T, Snyder D, Shrout T R 2011 J. Cryst. Growth 318 884Google Scholar
[118] Yu F P, Hou S, Zhao X, Zhang S J 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1344Google Scholar
[119] Zhang S J, Frantz E, Xia R, Everson W, Randi J, Snyder D W, Shrout T R 2008 Appl. Phys. 104 8Google Scholar
[120] 严纯华, 黄小卫 2024 中国稀土学报 42 381Google Scholar
Yan C H, Huang X W 2024 J. Chin. Soc. Rare Earths 42 381Google Scholar
[121] Stephan A, Gaulden T, Brown A D, Smith M, Miller L, Thundat T 2002 Rev. Sci. Instrum. 73 36Google Scholar
[122] Cao M S, Ye L, Zhou L M, Su Z Q, Bai R B 2011 Mech. Syst. Sig. Process. 25 630Google Scholar
[123] Zang H Y, Zhang X M, Zhu B L, Fatikow S 2019 Sens. Actuator, A 296 155Google Scholar
[124] Havelock D, Kuwano S, Vorlander M 2008 Handbook of Signal Processing in Acoustics (New York: Springer
[125] Wu J G, Shi H D, Zhao T L, Yu Y, Dong S X 2016 Adv. Funct. Mater. 26 7186Google Scholar
[126] 郭欣榕 2021 硕士学位论文 (山西: 中北大学)
Guo X R 2021 M. S. Thesis (Shanxi: North Central University
[127] 石树正, 耿文平, 刘勇, 毕开西, 李芬, 丑修建 2022 兵工学报 43 1998Google Scholar
Shi S Z, Geng W P, Liu Y, Bi K X, Li F, Chou J X 2022 Acta Armament. 43 1998Google Scholar
[128] Xu M H, Zhou H, Zhu L H, Shen J N, Zeng Y B, Feng Y J, Guo H 2019 Microsyst. Technol. 25 4465Google Scholar
[129] Le Traon O, Masson S, Chartier C, Janiaud D 2010 Solid State Sci. 12 318Google Scholar
[130] Li D N, Fan Q Q, Li J H, Ren W, Wu L, Sun B, Yang Z 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11–14, 2019
[131] Han J Q, Zhu Y S, Tao G H, Zhao Z Q, Yin Y J, Niu W J, Dong L Z 2019 IEEE Sens. J. 19 6602Google Scholar
[132] 曾宏川 2021 硕士学位论文 (四川: 电子科技大学)
Zeng H C 2021 M. S. Thesis (Sichuan: University of Electronic Science and Technology
[133] Wang Y M, Liu X L, Bai L Y, Cheng R, Jiang C, Li Y Z, Zhang J Q, Chen H, Li Y L, Yu F P, Guo S Y 2023 J. Alloys Compd. 937 168449Google Scholar
[134] 陈丽洁, 徐兴烨, 雷亚辉, 杨月, 朴胜春, 张丽 2020 中国电子科学研究院学报 15 1212Google Scholar
Chen L J, Xu X Y, Lei Y H, Yang Y, Piao S C, Zhang L 2020 J. CAEIT 15 1212Google Scholar
[135] Zhang D Z, Liu J, Qin L, Liu J C, Li M 2020 IEEE Sens. J. 20 7129Google Scholar
[136] 潘睿 2019 硕士学位论文 (济南: 山东大学)
Pan R 2019 M. S. Thesis (Jinan: Shandong University
[137] 朱瑞浩 2019 硕士学位论文 (成都: 电子科技大学)
Zhu R J 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology
[138] Wu T Q, You D, Gao H Y, Lian P H, Ma W G, Zhou X Y, Wang C M, Luo J H, Zhang H B, Tan H 2023 Crystals 13 1363Google Scholar
[139] 丁明鹏 2020 硕士学位论文 (济南: 山东大学)
Ding M P 2020 M. S. Thesis (Jinan: Shandong University
[140] 曾宏川, 彭斌, 张万里 2021 压电与声光 43 320Google Scholar
Zeng H C, Peng B, Zhang W L 2021 Piezoelectrics & Acoustooptics 43 320Google Scholar
[141] Shi Y N, Jiang S S, Liu Y, Wang Y Y, Qi P L 2022 Geofluids 2022 3964502Google Scholar
[142] Kapusuz H, Güvenc M A, Mistikoglu S 2019 Int. Adv. Res. Eng. J. 3 144Google Scholar
[143] Metz B 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, United States, July 28–30, 2014 p3974
[144] 王佳豪, 左爱斌, 彭月祥 2022 计量学报 43 1634Google Scholar
Wang J H, Zuo A B, Peng Y X 2022 Acta Metrol. Sin. 43 1634Google Scholar
[145] Zhu G, Yang X W, Liu X 2018 J. Phys. Conf. Ser. 1065 222003Google Scholar
[146] 朱刚, 杨晓伟, 闫磊, 刘鑫, 武东健 2015 中国专利 CN204188258U [2015-03-04]]
Zhu G, Yang X W, Yan L, Liu X, Wu D J 2015 CN Patent CN204188258U [2015-03-04]
[147] Beckman P, Gerding B F, Jain P K 1975 U. S. Patent 3 884 085 [1975-05-20]
[148] Norling B L, Wash M C 1988 US Patent 4 750 363 [1988-06-14]
[149] Kubasov I V, Kislyuk A M, Turutin A V, Bykov A S, Kiselev D A, Temirov A A, Zhukov R N, Sobolev N A, Malinkovich M D, Parkhomenko Y N 2019 Sensors 19 614Google Scholar
[150] Chen J G, Wu J E, Lu Y, Wang Y, Cheng J R 2022 Appl. Phys. Lett. 121 23Google Scholar
[151] Cavalloni C, Sommer R, Waser M 2011 9th Eurppean Conference on Turbomachinery-Fluid Dynamics and Thermodynamics Istanbul, Turkey, March 21–25, 2011 p1555
[152] Liu X L, Jiang C, Tian S W, Fang H R, Yu F P, Xian Z 2019 proceedings of the 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China November 01–04, 2019 p214
[153] 于法鹏, 刘学良, 姜超, 房浩然, 杨勇, 赵显 2021 中国专利 CN111579815A [2021-07-13]]
Yu F P, Liu X L, Jiang C, Fang H R, Yang Y, Zhao X 2021 CN Patent CN111579815A [2021-07-13]
[154] Jiang C, Liu X L, Yu F P, Zhang S J, Fang H R, Cheng X F, Zhao X 2020 IEEE Trans. Ind. Electron. 68 12850Google Scholar
[155] Zhang S J, Jiang X N, Lapsley M, Moses P, Shrout T R 2010 Appl Phys Lett. 96 1Google Scholar
[156] 任政, 苏刚, 王红战, 闫长新 2020 中国专利 CN210269907U [2020-04-07]]
Ren Z, Su G, Wang H Z, Yan C X 2020 CN Patent CN210269907U [2020-04-07]
[157] 胡子俭, 李承恩, 周家光, 李毅, 晏海学, 王志超 1999 中国专利 CN1226681A [1999-08-25]]
Hu Z J, Li C E, Zhou J G, Li Y, Yan H X, Wang Z C 1999 CN Patent CN1226681A [1999-08-25]
[158] 徐昱根, 朱万霞, 孙磊, 郇正利, 沈双全, 李朋洲, 黄彦平, 乔红威 2023 中国专利 CN116298388A [2023-06-23]]
Xu Y G, Zhu W X, Sun L, Xun Z L, Shen S Q, Li P Z, Huang Y P, Qiao H W 2023 CN Patent CN116298388A [2023-06-23]
[159] 张振海, 刘石豪, 何光, 吴缪斯, 张文一, 滕飞 2023 中国专利 CN116660578A [2023-08-29]]
Zhang Z H, Liu S H, He G, Wu L S, Zhang W Y, Teng F 2023 CN Patent CN116660578A [2023-08-29]
[160] Ochiai T 1998 Jpn. J. Appl. Phys. 37 1964Google Scholar
[161] 秦利锋, 夏虎, 李宁, 杨淳 2023 中国专利 CN115792276A [2023-05-12]]
Qin L F, Xia H, Li N, Yang C 2023 CN Patent CN115792276A [2023-05-12]
[162] Liu X L, Yu F P, Li F L, Tian S W, Cheng X F, Zhao X 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11–14, 2019
[163] Salazar G, Kim K, Zhang S J, Jiang X N 2012 Proceedings of SPIE-The International Society for Optical Engineering 8347 40Google Scholar
[164] Kim H, Kerrigan S, Bourham M, Jiang X N 2021 IEEE Trans. Ind. Electron. 68 5346Google Scholar
[165] Kerrigan S P 2023 PhD Disertation Development, Fabrication, and Characterization of Piezoelectric Non-Intrusive Wireless Vibration Sensors for Nuclear Power Plant Applications (Raleigh: NC State University
[166] 余快, 赵聪, 彭鹏, 黄伟, 金城, 冯婷, 李菊红 2023 中国专利 CN219996335U [2023-11-10]]
Yu K, Zhao C, Peng P, Huang W, Jin C, Feng T, Li J H 2023 CN Patent CN219996335U [2023-11-10]
[167] Epstein H C, Calif S P 1973 US Patent 3727084 [1973-04-10]
[168] Chatsworth D V, Chatsworth P F 2013 US Patent 8375793B2 [2013-02-19]
[169] 顾宝龙, 黄建民, 赵振平, 陈佳壁, 晏生剑, 潘威 2014 中国专利 CN203534825U [2014-04-09]]
Gu B L, Huang J M, Zhao Z P, Chen J B, Yan S J, Pan W 2014 CN Patent CN203534825U [2014-04-09]
[170] Walter P L 2007 Sound Vib. 41 89
-
图 4 (a) ABO3钙钛矿结构示意图[40]; (b)钨青铜沿着c轴的结构示意图[40]; (c)铋层状结构氧化物的示意图[40]
Fig. 4. (a) Schematic representation of the structure of ABO3 perovskite[40]; (b) schematic representation of the structure of tungsten bronze along the c-axis[40]; (c) schematic representation of bismuth layered structural oxides[40].
图 6 (a)单晶压电常数$ {d}_{33} $与居里温度/相变温度/熔点$ {T}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $关系图[119]; (b)不同压电材料最大使用温度范围[119]; (c), (d)高温压电晶体电阻率随温度的变化[117,118]
Fig. 6. (a) Plot of single crystal piezoelectric constant d33 versus Curie temperature/phase transition temperature/melting point Tmax[119]; (b) maximum operating temperature range of different piezoelectric materials[119]; (c), (d) variation of electrical resistivity of high-temperature piezoelectric crystals as a function of temperature[117,118].
图 9 弯曲模式压电振动传感器 (a) LGS温度-三轴加速度传感器示意图[126]; (b) 四悬臂梁集成中心拾振微球结构传感器示意图[127]; (c) d33模式四悬臂梁压电振动传感器的三维结构和激光扫描共焦显微镜图[128]; (d) LGS(左)和GaPO4(右)单晶传感器实物图[129]; (e) 双U型槽压电加速度计原理图[130]; (f) 三轴加速度计结构示意图[131]
Fig. 9. Bending mode piezoelectric vibration sensors: (a) LGS temperature-triaxial accelerometer[126]; (b) four-suspended-beam integrated center vibration microsphere structure sensor[127]; (c) three-dimensional structure of the d33-mode four-cantilever-beam piezoelectric vibration sensor and laser-scanning confocal microscope diagram[128]; (d) LGS (left) and GaPO4 (right) monocrystalline sensors[129]; (e) double U-slot-type piezoelectric accelerometer[130]; (f) triaxial accelerometer[131].
图 11 压缩模式压电振动传感器 (a) CNGS中心压缩式传感器示意图和实物图[133]; (b) AlN高温压电振动传感器结构示意图和实物图[134]; (c) 六自由度压缩式加速度传感器简化模型和样机实物图[135]; (d) 高温压缩式压电振动传感器实物图和内部结构图[136]
Fig. 11. Compression mode piezoelectric vibration sensors: (a) CNGS central compression sensor[133]; (b) AlN high-temperature piezoelectric vibration sensor[134]; (c) simplified model and prototype of the six-degree-of-freedom compression acceleration sensor[135]; (d) physical and internal structure diagram of high-temperature compression piezoelectric vibration sensor[136].
图 13 剪切模式压电振动传感器 (a) 偏心剪切式压电加速度传感器结构图[139]; (b) 对称剪切式压电加速度传感器结构图[139]; (c) CTGS平面剪切式高温加速度传感器结构示意图[140]; (d) 三角剪切式压电振动传感器结构图[141]; (e) 平面剪切式加速度计和三角剪切式加速度计结构示意图[138]; (f) 环型剪切式压电振动传感器结构示意图[142]; (g) UHT-12TM晶体357D90型剪切式高温加速度计(左)和EX611A20型差动剪切式高温加速度计(右)实物图[143]
Fig. 13. Shear mode piezoelectric vibration sensors: (a) Eccentric shear piezoelectric accelerometer[139]; (b) symmetric shear piezoelectric accelerometer[139]; (c) CTGS planar shear high-temperature accelerometer[140]; (d) triangular shear piezoelectric vibration sensor[141]; (e) planar and triangular shear accelerometers[138]; (f) ring shear piezoelectric vibration sensor[142]; (g) physical drawings of UHT-12TM Crystal 357D90 shear type high-temperature accelerometer (left) and EX611A20 differential shear type high-temperature accelerometer (right)[143].
图 16 高温悬臂梁式加速度计结构 (a)加速度计俯视图[147]; (b)加速度计剖视图[147]; (c)横梁止动组件正视图[147]; (d)安装在横梁止动组件底座框架上的缓冲组件剖视图[147]; (e)横梁止动组件后视图[147]; (f)含插入横梁通道的质量块[147]
Fig. 16. High-temperature cantilever beam accelerometer: (a) Top view of accelerometer[147]; (b) cutaway view of accelerometer[147]; (c) front view of crossbeam stop component[147]; (d) cutaway view of cushioning component installed on the base frame of the crossbeam stop component[147]; (e) rear view of the crossbeam stop component[147]; (f) mass block with inserted crossbeam channel[147].
图 17 (a)可温度补偿的悬臂梁加速度计工作原理图[148]; (b)矩形质量块的悬臂梁加速度计横向截面图[148]; (c)矩形质量块的悬臂梁加速度计纵向截面图[148]; (d)圆柱形质量块的悬臂梁加速度计横向截面图[148]; (e)圆柱形质量块的悬臂梁加速度计纵向截面图[148]; (f)方形质量块的悬臂梁加速度计横向截面图[148]; (g)方形质量块的悬臂梁加速度计纵向截面图[148]
Fig. 17. (a) Operating principle diagram of temperature-compensated cantilever beam accelerometer[148]; (b) transverse cross-section of cantilever beam accelerometer with rectangular mass block[148]; (c) longitudinal cross-section of cantilever beam accelerometer with rectangular mass block[148]; (d) transverse cross-section of cantilever beam accelerometer with cylindrical mass block[148]; (e) longitudinal cross-section of cantilever beam accelerometer with cylindrical mass block[148]; (f) transverse cross-section of cantilever beam accelerometer with square mass block[148]; (g) longitudinal section of cantilever beam accelerometer with square mass block[148]
图 18 B-LN低频振动传感器性能测试 (a) 传感器结构示意图(上)和传感器实物图(左下)及安装在激振器上的传感器(右下) [149]; (b) 传感器在不同位移幅值的正弦振动激励下产生的电压[149]; (c) 传感器频率响应情况[149]
Fig. 18. B-LN low-frequency vibration sensor performance test: (a) Schematic diagram of transducer structure (top), physical drawing of the transducer (bottom left), as well as the sensor installed on the exciter (bottom right)[149]; (b) voltages generated by transducer under sinusoidal vibration excitation with different displacement amplitudes[149]; (c) frequency response of the transducer[149].
图 19 压缩式高温振动传感器测试 (a) 传感器结构示意图[150]; (b) 不同压电材料所制传感器灵敏度随温度的变化[150]; (c) BFBT25-Mn所制传感器灵敏度在不同温度下长时间工作可靠性测试[150]
Fig. 19. Compression mode high-temperature vibration sensor performance test: (a) Schematic of sensor structure[150]; (b) the sensitivity of sensors made of different piezoelectric materials varies with temperature[150]; (c) sensitivity reliability test of BFBT25-Mn sensor under long-term operation at different temperatures[150].
图 20 KI100压缩式加速度计高温稳定性测试 (a)加速度计实物图[151]; (b)加速度计在不同老化阶段后灵敏度随温度变化情况[151]; (c)加速度计在不同老化阶段后绝缘电阻随温度变化情况[151]
Fig. 20. High temperature stability test of KI100 compression accelerometer: (a) Physical image of accelerometer[151]; (b) the sensitivity of accelerometers changes with temperature after different aging stages[151]; (c) variation of insulation resistance with temperature after different ageing stages of the accelerometer[151].
图 21 BTS压缩式压电振动传感器性能测试 (a)传感器组件的展开视图[152]; (b)传感器实物图[152]; (c)不同预紧扭矩下传感器的灵敏度温度稳定性[152]; (d)传感器灵敏度在500 ℃时长时间工作的可靠性测试[152]
Fig. 21. BTS compression piezoelectric vibration sensor performance test: (a) Unfolded view of the sensor component[152]; (b) physical image of sensor[152]; (c) temperature stability of the sensor sensitivity at different preload torques[152]; (d) reliability test of the sensor sensitivity for long-term operation at 500 ℃[152].
图 22 倒装装配的BTS高温振动加速度传感器性能测试 (a)高温振动加速度传感器的装配示意图[153]; (b)传感器的温度响应[153]; (c)传感器在高温下(600 ℃和650 ℃)下的工作状况[153]
Fig. 22. Performance test of BTS high-temperature vibration acceleration sensor with inverted assembly: (a) Assembly schematic of the sensor[153]; (b) temperature response of the sensor[153]; (c) operation of the sensor at elevated temperatures (600 ℃ and 650 ℃)[153]
图 23 BTS压缩式压电振动传感器性能测试 (a)传感器结构模型[154]; (b)传感器电荷随加速度的变化[154]; (c)不同频率下传感器灵敏度随温度的变化[154]; (d)传感器在600 ℃和650 ℃时灵敏度与持续工作时长的关系[154]
Fig. 23. BTS piezoelectric vibration sensor performance test: (a) Structure model of the sensor[154]; (b) variation of sensor charge with acceleration[154]; (c) variation of sensor sensitivity with temperature at different frequencies[154]; (d) relationship between sensor sensitivity and duration of continuous operation at 600 ℃ and 650 ℃[154].
图 24 单片压缩模式加速度计性能测试 (a)加速度计组件示意图[155]; (b)加速度计灵敏度随频率和温度的变化情况[155]; (c) 900 ℃下不同频率的灵敏度与持续工作时长的关系[155]
Fig. 24. Monolithic compression mode accelerometer performance test: (a) Schematic of the accelerometer components[155]; (b) variation of accelerometer sensitivity with frequency and temperature[155]; (c) sensitivity versus duration of continuous operation at 900 ℃ for different frequencies[155].
图 25 压缩模式高温压电振动传感器 (a)带螺帽紧固部的高温振动传感器整体结构示意图[156]; (b)带螺帽紧固部的高温振动传感器剖视图[156]; (c)高温450 ℃压电加速度计剖视图[157]; (d)耐高温高压的差分式压电加速度传感器结构示意图[158]; (e)耐高温高压的差分式压电加速度传感器内部放大示意图[158]; (f)带温度补偿的高温压电加速度传感器示意图[159]
Fig. 25. Compression mode high-temperature piezoelectric vibration sensors: (a) Schematic of the overall structure of high-temperature vibration sensor with nut fastening part[156]; (b) cutaway view of high-temperature vibration sensor with nut fastening part[156]; (c) cutaway view of high-temperature 450 ℃ piezoelectric accelerometer[157]; (d) structure of high-temperature and high-pressure-resistant differential piezoelectric acceleration sensor[158]; (e) internal enlarged schematic diagram of differential piezoelectric accelerometer resistant to high temperature and high pressure[158]; (f) high-temperature piezoelectric accelerometer with temperature compensation[159].
图 26 电荷剪切型压电加速度计的性能测试 (a)电荷剪切型压电加速度计的结构[160]; (b)电荷剪切型压电加速度计有无补偿电容元件的灵敏度温度依赖性[160]; (c)电荷剪切型压电加速度计的频率依赖性[160]
Fig. 26. Charge-shear piezoelectric accelerometer performance test: (a) Structure of charge-shear piezoelectric accelerometers[160]; (b) temperature dependence of the sensitivity of charge-shear piezoelectric accelerometers with and without compensating capacitive elements[160]; (c) frequency dependence of charge-shear piezoelectric accelerometers[160].
图 27 全温区近恒预紧力压电加速度传感器 (a)传感器整体示意图[161]; (b)传感器截面示意图[161]; (c)传感器螺栓预紧力随温度变化的示意图[161]
Fig. 27. Near-constant preload piezoelectric acceleration sensor at full temperature: (a) Schematic of sensor[161]; (b) schematic of sensor cross-section[161]; (c) schematic of sensor bolt preload as a function of temperature[161].
图 28 横向振动型剪切式加速度传感器性能测试 (a)传感器结构模型与实物图[162]; (b)传感器室温频率响应[162]; (c) 160 Hz时不同温度下传感器输出电荷与加速度的函数关系[162]
Fig. 28. Transverse vibration shear mode accelerometer performance test: (a) Sensor structure model and physical diagram[162]; (b) room temperature frequency response of sensor[162]; (c) sensor output charge as a function of acceleration for different temperatures at 160 Hz[162].
图 29 剪切式YCOB高温振动传感器性能测试 (a)高温工作后传感器实物图[163]; (b)传感器灵敏度在不同频率时随温度的变化情况[163]; (c) 1250 ℃测试10 h传感器的平均灵敏度及高温测试前后传感器的室温灵敏度(附图)[163]
Fig. 29. Shear type YCOB high-temperature vibration sensor performance test: (a) Physical image of the sensor after high-temperature operation[163]; (b) sensor sensitivity varies with temperature at different frequencies[163]; (c) average sensitivity of sensor tested at 1250 ℃ for 10 h and the room temperature sensitivity of sensor before and after high-temperature testing (attached figure)[163].
图 30 AlN剪切式高温加速度计 (a)加速度计实物图和模型图[164]; (b)不同温度时传感器的频率响应情况[164]; (c)传感器在不同温度和频率下的响应[164]; (d)长期高温下传感器灵敏度变化情况[164]; (e)传感器在11.2 kGy (1 Gy = 1 J/kg)照射后的灵敏度[164]
Fig. 30. AlN shear mode high-temperature accelerometer: (a) Physical (left) and modeled (right) diagrams of accelerometer[164]; (b) frequency response of accelerometer at different temperatures[164]; (c) sensitivity response of accelerometer at different temperatures and frequencies[164]; (d) sensitivity changes of accelerometer under long-term high temperature conditions[164]; (e) sensitivity of accelerometer after irradiation at 11.2 kGy (1 Gy = 1 J/kg)[164].
图 31 高温AlN多轴加速度计性能测试 (a)加速度计实物图(左)和模型图(右)[165]; (b)多轴加速度计对x方向1 g加速度的频率响应[165]; (c)多轴加速度计在每个轴都承受1 g加速度时的性能[165]
Fig. 31. High-temperature AlN multi-axis accelerometer performance test: (a) Physical (left) and modeled (right) diagrams of accelerometer[165]; (b) frequency response of multi-axis accelerometer to 1 g acceleration in the x-direction[165]; (c) performance of multi-axis accelerometer under 1 g acceleration on each axis[165].
图 32 剪切模式高温压电振动传感器 (a)环形剪切式IEPE高温振动传感器内部结构示意图[166]; (b)铌酸锂双边剪切高温压电加速度计结构示意图[167]; (c)铌酸锂单边剪切高温压电加速度计结构示意图[167]; (d)带有银窗的高温压电加速度计整体结构示意图[168]; (e)带银窗的高温压电加速度计剖视图[168]; (f)650 ℃小型高温振动传感器结构示意图[169]
Fig. 32. Shear mode high-temperature piezoelectric vibration sensors: (a) Ring shear IEPE high-temperature vibration sensor[166]; (b) lithium niobate bilateral shear high-temperature piezoelectric accelerometer[167]; (c) lithium niobate unilateral shear high-temperature piezoelectric accelerometer [167]; (d) schematic of the overall structure of high-temperature piezoelectric accelerometer with silver window[168]; (e) cutaway view of high-temperature piezoelectric accelerometer with silver window[168]; (f) structure of a 650 ℃ compact high-temperature vibration sensor[169].
表 1 不同结构类型加速度计的优缺点
Table 1. Advantages and disadvantages of different construction types of accelerometers.
加速度计
结构优点 缺点 应用场景 弯曲式 重量轻、灵敏度高、响应速度快、分辨率高、背底噪声低、易于微型化集成 频率范围窄、结构脆弱、抗冲击能力差、存在固有电荷泄露 微米级尺度的微弱信号的实时检测, 低频、低加速度信号测量等 压缩式 结构简单、加工便捷、制作成本低、强度和刚度大、共振频率高、频带宽、可以承受高水平瞬态振动 对力和温度变化敏感, 底座弯曲或热膨胀易引起较大测量误差、背底噪声高、横向灵敏度大、抗干扰能力较差 冲击测试等 剪切式 信号噪声低、应变小、抗干扰能力强、热性能稳定、电荷输出高、灵敏度高 结构复杂、固有频率低、可用频率带宽窄 微地震监测、钢水与钢渣、熔渣分离等 表 2 高温压电加速度计性能比较
Table 2. Performance comparison of high-temperature piezoelectric accelerometers.
压电材料 加速度计结构 最高服役温度/℃ 灵敏度/(pC·g-1) 频响范围/Hz 参考文献 PbZr0.51Ti0.49O3 平面剪切式 300 42 1—8000 [160] LGT 平面剪切式 350 3.82 100—2000 [162] BFBT25-Mn 压缩式 450 49 200—1000 [150] CNGS 压缩式 600 0.722 60—2000 [133] CTGS 平面剪切式 600 2.56 100—2000 [140] BTS 倒装压缩式 600 ~12.5 — [153] UHT-12TM 平面剪切式 649 10 — [143] BTS 压缩式 650 2.62 120—3000 [154] YCOB 压缩式 900 ~2.4 100—600 [155] AlN 平面剪切式 1000 9.2 40—600 [164] YCOB 平面剪切式 1000 ~5.9 1—335 [35] YCOB 平面剪切式 1250 ~1.26 1—320 [163] -
[1] 吕泉 2006现代传感器原理及应用(北京: 清华大学出版社)
Lü Q 2006 Principles and Applications of Modern Sensors (Beijing: Tsinghua University Press
[2] Giuliani A, Drera L, Arancio D, Mukhopadhyay B, Ngo H D 2014 Procedia Eng. 87 720Google Scholar
[3] Vandeparre H, Watson D, Lacour S 2013 Appl. Phys. Lett. 103 20Google Scholar
[4] Tavakkoli H, Momen H G, Sani E A, Yazgi M 2017 proceedings of the 2017 10th International Conference on Electrical and Electronics Engineering Bursa, Turkey, November 30–December 02, 2017 p459
[5] Yao Z, Liang T, Jia P G, Hong Y P, Qi L, Lei C, Zhang B, Xiong J J 2016 Sensors 16 913Google Scholar
[6] Roessig T A, Howe R T, Pisano A P, Smith J H 1997 proceedings of the Proceedings of International Solid State Sensors and Actuators Conference Chicago, United States, June 19, 1997 p859
[7] Kim N I, Chang Y L, Chen J, Barbee T, Wang W, Kim J Y, Kwon M K, Shervin S, Moradnia M, Pouladi S, Khatiwada D, Selvamanickam V, Ryou J H 2020 Sens. Actuators, A 305 111940Google Scholar
[8] Jiang X N, Kim K, Zhang S J, Johnson J, Salazar G 2013 Sensors 14 144Google Scholar
[9] Yu F P, Zhang S J, Zhao X, Yuan D R, Qin L F, Wang Q M, Shrout T R 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 868Google Scholar
[10] Shrout T R, Yu F P, Zhang S J, Wang Q M, Fei Y, Chai B 2011 proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings San Francisco, United States, May 1–5, 2011 p82
[11] Yang Y, Wang M H, Yu Z H, Yu Q X, Chen K P 2021 Sens. Actuator A-Phys. 321 112562Google Scholar
[12] Yu F P, Duan X, Zhang S J, Lu Q, Zhao X 2014 Crystals 4 241Google Scholar
[13] 袁宇鹏, 梅勇, 齐良才, 张祖伟, 李小飞, 王登攀 2022 压电与声光 44 940Google Scholar
Yuan Y P, Mei Y, Qi L C, Zhang Z W, Li X F, Wang P D 2022 Piezoelectrics & Acoustooptics 44 940Google Scholar
[14] 吴宗岱 1988 实验力学 3 329
Wu Z D 1988 J. Exp. Mech. 3 329
[15] 张永峰 2003 硕士学位论文 (西安: 西北工业大学)
Zhang Y F 2003 M. S. Thesis (Xi'an: Northwestern Polytechnical University
[16] Hall C L, Leary S, Lapierre L, Hess A, Bladen K 2001 proceedings of the 2001 IEEE Aerospace Conference Proceedings Montana, United States, March 10–17, 2001 p3069
[17] 张福学 1990 航空电子技术 1 1
Zhang X F 1990 Avionics Technol. 1 1
[18] 周俊 2016 硕士学位论文 (武汉: 华中科技大学)
Zhou J 2016 M. S. Thesis (Wuhan: Huazhong University of Science and Technology
[19] 吴大方, 赵寿根, 潘兵, 王岳武, 王杰, 牟朦, 朱林 2013 力学学报 45 598Google Scholar
Wu D F, Zhao S G, Pan B, Wang Y W, Wang J, Mou M, Zhu L 2013 Acta Mech. Sin. 45 598Google Scholar
[20] Crawley E F 1994 AIAA J. 32 1689Google Scholar
[21] High-temperature modal survey of a hot-structure control surface, Spivey N D https://ntrs.nasa.gov/citations/20110023803 [2024-6-1]
[22] 孙明晓, 季俊云, 史岩峰, 陈玉玲, 张巧寿 2019 强度与环境 49 54
Sun M X, Ji J Y, Shi Y F, Chen Y L, Zhang Q S 2019 Struct. Environ. Eng. 49 54
[23] Turner R, Fuierer P A, Newnham R, Shrout T R 1994 Appl. Acoust. 41 299Google Scholar
[24] Fleming W J 2001 IEEE Sens. J. 1 296Google Scholar
[25] 袁宇鹏, 王登攀, 李小飞, 李军, 胡杨, 曾翔豹, 王音心, 张祖伟 2019 压电与声光 41 49Google Scholar
Yuan Y P, Wang D P, Li X F, Li J, Hu Y, Zeng X B, Wang Y X, Zhang Z W 2019 Piezoelectrics & Acoustooptics 41 49Google Scholar
[26] Bulst W E, Fischerauer G, Reindl L 1998 proceedings of the IECON'98 Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society Aachen, Germany, August 31–September 04, 1998 p265
[27] 王寿荣 2000 硅微型惯性器件理论及应用 (南京: 东南大学出版社)
Wang S R 2000 Theory and Applications of Silicon Miniature Inertial Devices (Nanjing: Southeast University Press
[28] Kazys R, Vaskeliene V 2021 Sensors 21 3200Google Scholar
[29] Meng Y F, Chen G Q, Huang M Y 2022 Nanomaterials 12 1171Google Scholar
[30] Yu F P, Duan X L, Zhang S J, Yu Y G, Ma T F, Zhao X T 2012 proceedings of the 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications Shanghai, China, November 23–25 2012 p293
[31] 王天资, 周志勇, 李伟, 董显林, 张磊 2020 传感器与微系统 39 1Google Scholar
Wang T Z, Zhou Z Y, Li W, Dong X L, Zhang L 2020 Transducer Microsyst. Technol. 39 1Google Scholar
[32] 单成祥 1999 传感器的理论与设计基础及其应用 (北京: 国防工业出版社)
Shan C X 1999 Theoretical and Design Basis of Sensors and their Applications (Beijing: National Defense Industry Press
[33] Bilgunde P N, Bond L J 2018 Ultrasonics 87 103Google Scholar
[34] Yu J C, Lan C B 2001 Sens. Actuator. A 88 178Google Scholar
[35] Kim K, Zhang S J, Salazar G, Jiang X N 2012 Sens. Actuator, A 178 40Google Scholar
[36] 王丹钰, 王安玖, 王五松, 李荔, 张垚宾, 翟继卫 2021 陶瓷学报 42 376Google Scholar
Wang D Y, Wang A J, Wang W S, Li L, Zhang Y B, Zhai J W 2021 J. Ceram. 42 376Google Scholar
[37] 栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (北京: 北京大学出版社)
Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Transducer Arrays (Beijing: Peking University Press
[38] 李庆利, 曹建新, 赵丽媛, 吕剑明, 范冠锋 2008 化工进展 27 16Google Scholar
Li Q L, Cao J X, Zhao L Y, Lv J M, Fan G F 2008 Chem. Ind. Eng. Prog. 27 16Google Scholar
[39] Zhang F Q, Li Y X 2014 J. Inorg. Mater. 29 449Google Scholar
[40] Chen L, Liu H, Qi H, Chen J 2022 Prog. Mater. Sci. 127 100944Google Scholar
[41] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar
[42] Kumar A, Bhanu Prasad V V, James Raju K C, James A R 2015 J. Mater. Sci. -Mater. Electron. 26 3757Google Scholar
[43] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar
[44] Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023 Prog. Mater. Sci. 132 101026Google Scholar
[45] Zou T T, Wang X H, Wang H, Zhong C F, Li L T, Chen I W 2008 Appl. Phys. Lett. 93 19Google Scholar
[46] Zhao H Y, Hou Y D, Yu X L, Zheng M P, Zhu M K 2018 J. Appl. Phys. 124 19Google Scholar
[47] Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V, Borisevich A Y 2013 Adv. Mater. 25 2497Google Scholar
[48] Dho J H, Qi X D, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445Google Scholar
[49] Leontsev S O, Eitel R E 2009 J. Am. Ceram. Soc. 92 2957Google Scholar
[50] Kim S, Miyauchi R, Sato Y, Nam H, Fujii I, Ueno S 2023 Adv. Mater. 35 11Google Scholar
[51] Yang H B, Sun Y Y, Gao H Y, Zhou X Y, Tan H, Shu C 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 3102Google Scholar
[52] Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H 2015 Adv. Mater. 27 6976Google Scholar
[53] Hu H, Zhuang J, Weng Y X, Zhang N, Wang B Y, Wang D W, Feng G B, Ren W 2023 J. Eur. Ceram. Soc. 43 6815Google Scholar
[54] Hu W, Tan X L, Rajan K 2011 J. Eur. Ceram. Soc. 31 801Google Scholar
[55] Sun S D, Liu Y, Zhang Y Y, Wang L, Huo C R, Deng S Q, Liu H, Ren Y, Wu J, Oi H, Chen J 2022 Acta Mater. 239 118285Google Scholar
[56] Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, ROEDEL J 2013 Adv. Funct. Mater. 23 4079Google Scholar
[57] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar
[58] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar
[59] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar
[60] Egerton L, Dillon D M 1959 J. Am. Ceram. Soc. 42 438Google Scholar
[61] Zuo R Z, Fu J 2011 J. Am. Ceram. Soc. 94 1467Google Scholar
[62] Zhang B Y, Wu J G, Cheng X J, Wang X P, Xiao D Q, Zhu J G, Wang X J, Lou X J 2013 ACS Appl. Mater. Interfaces 5 7718Google Scholar
[63] Wu J G, Wang X P, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G, Luo X J 2014 J. Appl. Phys. 115 114104Google Scholar
[64] Rubio-Marcos F, Lopez-Juarez R, Rojas-Hernandez R E, del Campo A, Razo-Perez N, Fernandez J F 2015 ACS Appl. Mater. Interfaces 7 23080Google Scholar
[65] 陈秀峰, 张大军 2014 现代技术陶瓷 4 28Google Scholar
Chen X F, Zhang D J 2014 Adv. Ceram. 4 28Google Scholar
[66] Chen J, Liu H H, Yu D Y, Li Q N, Yuan C L, Xu J W, Cheng S, Zhao J T, Zhou C R, Rao G H 2024 Chem. Eng. J. 480 148202Google Scholar
[67] 李月明, 张玉平, 廖润华, 程亮 2006 陶瓷学报 27 205
Li Y M, Zhang Y P, Liao R H, Chen L 2006 J. Ceram. 27 205
[68] Cai K, Jiang F, Deng P Y, Ma J T, Guo D 2015 J. Am. Ceram. Soc. 98 3165Google Scholar
[69] Zhao X M, Liu C, Zhang D N, Huang D, Liu K, Zhang H W 2022 Ceram. Int. 48 35461Google Scholar
[70] 周静, 赵然, 陈文 2005 陶瓷学报 26 202Google Scholar
Zhou J, Zhao R, Chen W 2005 J. Ceram. 26 202Google Scholar
[71] Fang R R, Zhou Z Y, Liang R H, Dong X L 2020 Ceram. Int. 46 23505Google Scholar
[72] Ray S, Günther E, Ritzhaupt-Kleissl H J 2000 J. Mater. Sci. 35 6221Google Scholar
[73] Vasant Kumar C, Sayer M, Pascual R 1992 Appl. Phys. Lett. 60 2207Google Scholar
[74] Jin R Q, Ren X D, Xu Z, Yan Y K 2023 Ceram. Int. 49 39516Google Scholar
[75] Hagh N M, Nonaka K, Allahverdi M, Safari A 2005 J. Am. Ceram. Soc. 88 3043Google Scholar
[76] Fang R R, Zhou Z Y, Liang R H, Dong X L 2021 Ceram. Int. 47 26942Google Scholar
[77] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[78] Chen H B, Zhai J W 2012 J. Electron. Mater. 41 2238Google Scholar
[79] Long C B, Fan H Q, Li M M 2013 Dalton Trans. 42 3561Google Scholar
[80] Li T, Li X L, Zhao Z H, Ji H M, Dai Y J 2015 Integr. Ferroelectr. 162 1Google Scholar
[81] Pan C B, Zhao G C, Li S M, Wang X L, Wang J M Z, Tao M, Zhang X K, Yang C, Xu J P, Yin W, Yin L H, Song W H, Tong P, Zhu X B, Yang J, Sun Y P 2022 J. Mater. Chem. C 10 15851Google Scholar
[82] Zhang H X 2007 proceedings of the 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara, Japan, May 27–31, 2007 p751
[83] Zhang S J, Alberta E, Eitel R E, Rehrig P W, Hackenberger W, Randall C A, Shrout T R 2005 proceedings of the Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, California, United States, March 07–10, 2005 p279
[84] Zhao H Y, Hou Y D, YU X L, Zheng M P, Zhu M K 2020 J. Mater. Chem. C 8 1562Google Scholar
[85] Zhang S J, Yu F P 2011 J. Am. Ceram. Soc. 94 3153Google Scholar
[86] Belavic D, Bradesko A, Zarnik M S, Rojac T 2015 Metrol. Meas. Syst. 22 331Google Scholar
[87] 龚美霞 2001 国外电子元器件 1 9
Gong M X 2001 Int. Electron. Ele 1 9
[88] Philippot E, Palmier D, Pintard M, Goiffon A 1996 J. Solid State Chem. 123 1Google Scholar
[89] London D 2011 Can. Mineral. 49 117Google Scholar
[90] Shen C Y, Zhang S J, Cao W W, Cong H J, Yu H H, Wang J Y, Zhang H J 2015 Appl. Phys. 117 064106Google Scholar
[91] Shen C Y, Zhang S J, Wang D L, Xu T X, Yu H H, Cao W W, Wang J Y, Zhang H J 2015 Crystengcomm 17 1791Google Scholar
[92] Takeda H, Hagiwara M, Noguchi H, Hoshina T, Takahashi T, Kodama N 2013 Appl. Phys. Lett. 102 242907Google Scholar
[93] Zhang Y Y, Yin X, Yu H H, Cong H J, Zhang H J, Wang J Y, Boughtont R I 2012 Cryst. Growth Des. 12 622Google Scholar
[94] Haines J, Cambon O, Prudhomme N, Fraysse G, Keen D A, Chapon L C, Tucker M G 2006 Phys. Rev. B 73 14103Google Scholar
[95] Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 1427Google Scholar
[96] Giurgiutiu V, Xu B L, Liu W P 2010 Struct. Health Monit. 9 513Google Scholar
[97] 陈林, 陈异, 肖定全, 朱建国 2005 四川大学学报 42 150
Chen L, Chen Y, Xiao D Q, Zhu J G 2005 J. Sichuan Univ. 42 150
[98] Bouchy S, Zednik R J, Bélanger P 2022 Materials 15 4716Google Scholar
[99] Kim N I, Yarali M, Moradnia M, Aqib M, Liao C H, AlQatari F, Nong M T, Li X H, Ryou J H 2023 Adv. Funct. Mater. 33 2212538Google Scholar
[100] Sotnikov A V, Schmidt H, Weihnacht M, Smirnova E P, Chemekova T Y, Makarov Y N 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 808Google Scholar
[101] 赵超亮, 宋波, 张幸红, 韩杰才 2012 材料导报 26 11
Zhao C L, Song B, Zhang X H, Han J C 2012 Mater. Rep. 26 11
[102] Oreshko A P, Ovchinnikova E N, Rogalev A, Wilhelm F, Mill B V, Dmitrienko V E 2018 J. Synchrotron Radiat. 25 222Google Scholar
[103] Bohm J, Chilla E, Flannery C, Fröhlich H J, Hauke T, Heimann R B, Hengst M, Straube U 2000 J. Cryst. Growth 216 293Google Scholar
[104] Sato J, Takeda H, Morikoshi H, Shimamura K, Rudolph P, Fukuda T 1998 J. Cryst. Growth 191 746Google Scholar
[105] Nakao H, Nishida M, Shikida T, Shimizu H, Takeda H, Shiosaki T 2006 J. Alloys Compd. 408 582Google Scholar
[106] Zhang S, Yoshikawa A, Kamada K, Frantz E, Xia R, Snyder D W, Fukuda T, Shrout T R 2008 Solid State Commun. 148 213Google Scholar
[107] Takeda H, Shimamura K, Chani V, Kato T, Fukuda T 1999 Cryst. Res. Technol. 34 1141Google Scholar
[108] Takeda H, Fukuda T, Kawanaka H, Onozato N 2001 J. Mater. Sci. -Mater. Electron. 12 199Google Scholar
[109] Ren C K, Yin L B, Wang S, Chen W R, Wang S, Xiong K N, Tu X N, Bao N Z, Zheng Y Q, Chen J, Shi E W 2024 J. Rare Earths (receivedGoogle Scholar
[110] Shen C Y, Zhang H J, Cong H J, Yu H H, Wang J Y, Zhang S J 2014 Appl. Phys. 116 4Google Scholar
[111] Taylor N T, Davies F H, Hepplestone S 2017 Mater. Res. Express 4 125904Google Scholar
[112] Zhong D G, Teng B, Kong W J, Ji S H, Zhang S M, Li J H, Cao L F, Jing H L, He L X 2017 J. Alloys Compd. 692 413Google Scholar
[113] Takeda H, Nakao H, Izukawa S, Shimizu H, Nishida T, Okamura S, Shiosaki T 2006 J. Alloys Compd. 408 474Google Scholar
[114] Fei Y, Chai B H, Ebbers C, Liao Z, Schaffers K I, Thelin P 2006 J. Cryst. Growth 290 301Google Scholar
[115] Zhang S J, Fei Y T, Frantz E, Snyder D W, Chai B H T, Shrout T R 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2703Google Scholar
[116] Yu F P, Zhang S J, Zhao X, Guo S Y, Duan X L, Yuan D R, Shrout T R 2011 J. Phys. D: Appl. Phys. 44 135405Google Scholar
[117] Zhang S J, Yu F P, Xia R, Fei Y T, Frantz E, Zhao X, Yuan D R, Chai B H T, Snyder D, Shrout T R 2011 J. Cryst. Growth 318 884Google Scholar
[118] Yu F P, Hou S, Zhao X, Zhang S J 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1344Google Scholar
[119] Zhang S J, Frantz E, Xia R, Everson W, Randi J, Snyder D W, Shrout T R 2008 Appl. Phys. 104 8Google Scholar
[120] 严纯华, 黄小卫 2024 中国稀土学报 42 381Google Scholar
Yan C H, Huang X W 2024 J. Chin. Soc. Rare Earths 42 381Google Scholar
[121] Stephan A, Gaulden T, Brown A D, Smith M, Miller L, Thundat T 2002 Rev. Sci. Instrum. 73 36Google Scholar
[122] Cao M S, Ye L, Zhou L M, Su Z Q, Bai R B 2011 Mech. Syst. Sig. Process. 25 630Google Scholar
[123] Zang H Y, Zhang X M, Zhu B L, Fatikow S 2019 Sens. Actuator, A 296 155Google Scholar
[124] Havelock D, Kuwano S, Vorlander M 2008 Handbook of Signal Processing in Acoustics (New York: Springer
[125] Wu J G, Shi H D, Zhao T L, Yu Y, Dong S X 2016 Adv. Funct. Mater. 26 7186Google Scholar
[126] 郭欣榕 2021 硕士学位论文 (山西: 中北大学)
Guo X R 2021 M. S. Thesis (Shanxi: North Central University
[127] 石树正, 耿文平, 刘勇, 毕开西, 李芬, 丑修建 2022 兵工学报 43 1998Google Scholar
Shi S Z, Geng W P, Liu Y, Bi K X, Li F, Chou J X 2022 Acta Armament. 43 1998Google Scholar
[128] Xu M H, Zhou H, Zhu L H, Shen J N, Zeng Y B, Feng Y J, Guo H 2019 Microsyst. Technol. 25 4465Google Scholar
[129] Le Traon O, Masson S, Chartier C, Janiaud D 2010 Solid State Sci. 12 318Google Scholar
[130] Li D N, Fan Q Q, Li J H, Ren W, Wu L, Sun B, Yang Z 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11–14, 2019
[131] Han J Q, Zhu Y S, Tao G H, Zhao Z Q, Yin Y J, Niu W J, Dong L Z 2019 IEEE Sens. J. 19 6602Google Scholar
[132] 曾宏川 2021 硕士学位论文 (四川: 电子科技大学)
Zeng H C 2021 M. S. Thesis (Sichuan: University of Electronic Science and Technology
[133] Wang Y M, Liu X L, Bai L Y, Cheng R, Jiang C, Li Y Z, Zhang J Q, Chen H, Li Y L, Yu F P, Guo S Y 2023 J. Alloys Compd. 937 168449Google Scholar
[134] 陈丽洁, 徐兴烨, 雷亚辉, 杨月, 朴胜春, 张丽 2020 中国电子科学研究院学报 15 1212Google Scholar
Chen L J, Xu X Y, Lei Y H, Yang Y, Piao S C, Zhang L 2020 J. CAEIT 15 1212Google Scholar
[135] Zhang D Z, Liu J, Qin L, Liu J C, Li M 2020 IEEE Sens. J. 20 7129Google Scholar
[136] 潘睿 2019 硕士学位论文 (济南: 山东大学)
Pan R 2019 M. S. Thesis (Jinan: Shandong University
[137] 朱瑞浩 2019 硕士学位论文 (成都: 电子科技大学)
Zhu R J 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology
[138] Wu T Q, You D, Gao H Y, Lian P H, Ma W G, Zhou X Y, Wang C M, Luo J H, Zhang H B, Tan H 2023 Crystals 13 1363Google Scholar
[139] 丁明鹏 2020 硕士学位论文 (济南: 山东大学)
Ding M P 2020 M. S. Thesis (Jinan: Shandong University
[140] 曾宏川, 彭斌, 张万里 2021 压电与声光 43 320Google Scholar
Zeng H C, Peng B, Zhang W L 2021 Piezoelectrics & Acoustooptics 43 320Google Scholar
[141] Shi Y N, Jiang S S, Liu Y, Wang Y Y, Qi P L 2022 Geofluids 2022 3964502Google Scholar
[142] Kapusuz H, Güvenc M A, Mistikoglu S 2019 Int. Adv. Res. Eng. J. 3 144Google Scholar
[143] Metz B 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, United States, July 28–30, 2014 p3974
[144] 王佳豪, 左爱斌, 彭月祥 2022 计量学报 43 1634Google Scholar
Wang J H, Zuo A B, Peng Y X 2022 Acta Metrol. Sin. 43 1634Google Scholar
[145] Zhu G, Yang X W, Liu X 2018 J. Phys. Conf. Ser. 1065 222003Google Scholar
[146] 朱刚, 杨晓伟, 闫磊, 刘鑫, 武东健 2015 中国专利 CN204188258U [2015-03-04]]
Zhu G, Yang X W, Yan L, Liu X, Wu D J 2015 CN Patent CN204188258U [2015-03-04]
[147] Beckman P, Gerding B F, Jain P K 1975 U. S. Patent 3 884 085 [1975-05-20]
[148] Norling B L, Wash M C 1988 US Patent 4 750 363 [1988-06-14]
[149] Kubasov I V, Kislyuk A M, Turutin A V, Bykov A S, Kiselev D A, Temirov A A, Zhukov R N, Sobolev N A, Malinkovich M D, Parkhomenko Y N 2019 Sensors 19 614Google Scholar
[150] Chen J G, Wu J E, Lu Y, Wang Y, Cheng J R 2022 Appl. Phys. Lett. 121 23Google Scholar
[151] Cavalloni C, Sommer R, Waser M 2011 9th Eurppean Conference on Turbomachinery-Fluid Dynamics and Thermodynamics Istanbul, Turkey, March 21–25, 2011 p1555
[152] Liu X L, Jiang C, Tian S W, Fang H R, Yu F P, Xian Z 2019 proceedings of the 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China November 01–04, 2019 p214
[153] 于法鹏, 刘学良, 姜超, 房浩然, 杨勇, 赵显 2021 中国专利 CN111579815A [2021-07-13]]
Yu F P, Liu X L, Jiang C, Fang H R, Yang Y, Zhao X 2021 CN Patent CN111579815A [2021-07-13]
[154] Jiang C, Liu X L, Yu F P, Zhang S J, Fang H R, Cheng X F, Zhao X 2020 IEEE Trans. Ind. Electron. 68 12850Google Scholar
[155] Zhang S J, Jiang X N, Lapsley M, Moses P, Shrout T R 2010 Appl Phys Lett. 96 1Google Scholar
[156] 任政, 苏刚, 王红战, 闫长新 2020 中国专利 CN210269907U [2020-04-07]]
Ren Z, Su G, Wang H Z, Yan C X 2020 CN Patent CN210269907U [2020-04-07]
[157] 胡子俭, 李承恩, 周家光, 李毅, 晏海学, 王志超 1999 中国专利 CN1226681A [1999-08-25]]
Hu Z J, Li C E, Zhou J G, Li Y, Yan H X, Wang Z C 1999 CN Patent CN1226681A [1999-08-25]
[158] 徐昱根, 朱万霞, 孙磊, 郇正利, 沈双全, 李朋洲, 黄彦平, 乔红威 2023 中国专利 CN116298388A [2023-06-23]]
Xu Y G, Zhu W X, Sun L, Xun Z L, Shen S Q, Li P Z, Huang Y P, Qiao H W 2023 CN Patent CN116298388A [2023-06-23]
[159] 张振海, 刘石豪, 何光, 吴缪斯, 张文一, 滕飞 2023 中国专利 CN116660578A [2023-08-29]]
Zhang Z H, Liu S H, He G, Wu L S, Zhang W Y, Teng F 2023 CN Patent CN116660578A [2023-08-29]
[160] Ochiai T 1998 Jpn. J. Appl. Phys. 37 1964Google Scholar
[161] 秦利锋, 夏虎, 李宁, 杨淳 2023 中国专利 CN115792276A [2023-05-12]]
Qin L F, Xia H, Li N, Yang C 2023 CN Patent CN115792276A [2023-05-12]
[162] Liu X L, Yu F P, Li F L, Tian S W, Cheng X F, Zhao X 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11–14, 2019
[163] Salazar G, Kim K, Zhang S J, Jiang X N 2012 Proceedings of SPIE-The International Society for Optical Engineering 8347 40Google Scholar
[164] Kim H, Kerrigan S, Bourham M, Jiang X N 2021 IEEE Trans. Ind. Electron. 68 5346Google Scholar
[165] Kerrigan S P 2023 PhD Disertation Development, Fabrication, and Characterization of Piezoelectric Non-Intrusive Wireless Vibration Sensors for Nuclear Power Plant Applications (Raleigh: NC State University
[166] 余快, 赵聪, 彭鹏, 黄伟, 金城, 冯婷, 李菊红 2023 中国专利 CN219996335U [2023-11-10]]
Yu K, Zhao C, Peng P, Huang W, Jin C, Feng T, Li J H 2023 CN Patent CN219996335U [2023-11-10]
[167] Epstein H C, Calif S P 1973 US Patent 3727084 [1973-04-10]
[168] Chatsworth D V, Chatsworth P F 2013 US Patent 8375793B2 [2013-02-19]
[169] 顾宝龙, 黄建民, 赵振平, 陈佳壁, 晏生剑, 潘威 2014 中国专利 CN203534825U [2014-04-09]]
Gu B L, Huang J M, Zhao Z P, Chen J B, Yan S J, Pan W 2014 CN Patent CN203534825U [2014-04-09]
[170] Walter P L 2007 Sound Vib. 41 89
计量
- 文章访问数: 673
- PDF下载量: 50
- 被引次数: 0