搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子散射技术在Zintl相化合物热导率研究中的应用

张翠萍 朱金峰 沈晓玲 舒明方 任清勇 马杰

引用本文:
Citation:

中子散射技术在Zintl相化合物热导率研究中的应用

张翠萍, 朱金峰, 沈晓玲, 舒明方, 任清勇, 马杰
cstr: 32037.14.aps.74.20241163

Application of neutron scattering to studying low lattice thermal conductivity of Zintl phase compounds

ZHANG Cuiping, ZHU Jinfeng, SHEN Xiaoling, SHU Mingfang, REN Qingyong, MA Jie
cstr: 32037.14.aps.74.20241163
PDF
HTML
导出引用
  • Zintl相化合物因为其独特的晶体结构和优异的输运性能, 在能源存储及转换领域尤其是热电材料应用中受到广泛关注. 为了理解Zintl相化合物优异热电性能起源, 科研工作者们利用中子散射技术结合分子动力学模拟, 对晶格热导和电声耦合效应展开研究, 取得了一系列成果. 本文系统总结了中子散射对一些Zintl相化合物的结构及其晶格动力学的相关研究工作, 按照零维A14MPn11型化合物、一维链状化合物、二维层状AB2X2型化合物和其结构变体AB4X3型化合物, 层状ZrBeSi结构Zintl相化合物的顺序依次梳理了其低晶格热导率的物理起源. 通过中子衍射技术探讨了晶体结构、原子位移参数等信息; 围绕中子非弹性散射实验, 探讨了声子态密度的测量方法及其对Zintl相化合物动力学性质的研究. 在深入认识Zintl相化合物的同时, 揭示了其微观结构和优化材料性能, 以期对设计新型热电功能材料具有一些启发.
    Due to the unique crystal structures and excellent transport properties, the Zintl phase thermoelectric materials have aroused extensive interest in energy storage and conversion. To explore the origins of those excellent performances, a series of experimental and theoretical techniques have been applied, such as neutron scattering, thermal conductivity, and molecular dynamics simulations with machine learning. In this paper, the progress of neutron scattering research on the structure and dynamics of Zintl phase is summarized, for example A14MPn11 compounds with zero-dimensional (0D) substructures, 1D chains-based compounds, 2D layered A2BX2 compounds (including the binary Mg3Sb2) and their structural variants, as well as AB4X3, and ZrBeSi-type compounds. The underlying mechanisms of intrinsically low lattice thermal conductivity in those Zintl phase are discussed in detail. These compounds generally exhibit the following characteristics: 1) strong anharmonicity, which is characterized by strong atomic vibrations and anharmonic phonon-phonon scattering; 2) weak chemical bonding, which usually leads to low sound velocity and interatomic force constants, and corresponding to low-energy phonon branches; 3) intrinsic vacancy defect, which weakens the bond strengths, softens the lattice, and enhances anharmonic phonon-phonon scattering. Neutron diffraction is applied to studying crystal structures, lattice parameters, atomic occupancies, and atomic displacement parameters. Inelastic neutron scattering measures the lattice dynamics, and density of states, which are related to lattice thermal conductivity. Hence, the physical mechanisms of Zintl compounds are analyzed for optimizing material properties and designing new functional materials.
      通信作者: 马杰, jma3@sjtu.edu.cn
    • 基金项目: 国家重点研发基金(批准号: 2022YFA1402702)、国家自然科学基金(批准号: U2032213, 12474024)、广东省极端条件重点实验室(批准号: 2023B1212010002)和广东省自然科学基金(批准号: 2021B1515140014)资助的课题.
      Corresponding author: MA Jie, jma3@sjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402702), the National Natural Science Foundation of China (Grant Nos. U2032213, 12474024), the Guangdong Provincial Key Laboratory of Extreme Conditions (Grant No. 2023B1212010002), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2021B1515140014).
    [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    Rowe D M 2006 CRC Handbook of Thermoelectrics (Boca Raton: CRC/Taylor & Francis

    [3]

    Zintl E 1939 Angew. Chem. 52 1Google Scholar

    [4]

    Laves F 1941 Naturwissenschaften 29 244Google Scholar

    [5]

    Nesper R 1990 Prog. Solid State Chem. 20 1Google Scholar

    [6]

    Shuai J, Mao J, Song S W, Zhang Q Y, Chen G, Ren Z F 2017 Mater. Today Phys. 1 74Google Scholar

    [7]

    Toberer E S, May A F, Snyder G J 2010 Chem. Mater. 22 624Google Scholar

    [8]

    Zevalkink A, Pomrehn G, Takagiwa Y, Swallow J, Snyder G Y 2013 Chem. Sus. Chem. 6 2316Google Scholar

    [9]

    Shi X, Song S W, Gao G H, Ren Z F 2024 Science 384 757Google Scholar

    [10]

    Kauzlarich S M, Brown S R, Snyder G J 2007 Dalton Trans. 21 2099Google Scholar

    [11]

    Kazem N, Kauzlarich S M 2016 Handbook on the Physics and Chemistry of Rare Earths (Vol. 50) (Holland: Elsevier) pp177–208

    [12]

    Liu K J, Zhang Z W, Chen C, Wei L H, He H L, Mao J, Zhang Q 2022 Rare Met. 41 2998Google Scholar

    [13]

    Kauzlarich S M, Devlin K P, Perez C J 2021 Thermoelectric Energy Conversion (Cambridge: Woodhead Publishing) pp157–182

    [14]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [15]

    Liu K F, Xia S Q 2019 J. Sol. State Chem. 270 252Google Scholar

    [16]

    Squires G L 2012 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press

    [17]

    Fritzsche H, Huot J, Fruchart D 2016 Neutron Scattering and Othernuclear Techniques for Hydrogen in Materials (Cham: SpringerInternational Publishing

    [18]

    Wills B T M, Carlile C J 2009 Experimental Neutron Scattering (Oxford: Oxford University Press

    [19]

    Yamani Z, Ryan D H 2010 Can. J. Phys. 88 771Google Scholar

    [20]

    Bewley R I, Eccleston R S, McEwen K A, Hayden S M, Dove M T, Bennington S M, Treadgold J R, Coleman R L S 2006 Physics B (Amsterdam, Neth.) 385-386 1029Google Scholar

    [21]

    Shirane G, Shapiro S M, Tranquada J M 2002 Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge University Press

    [22]

    Langel W 2023 ChemTexts 9 12Google Scholar

    [23]

    Chen M N, Wu J T, Huang Q, Jiao J, Dun Z L, Wang G H, Chen Z W, Lin G T, Rathinam V, Li C J, Pei Y Z, Ye F, Zhou H D, Ma J 2021 Front. Phys. 9 785801Google Scholar

    [24]

    Ren Q Y, Gupta M K, Jin M, Ding J X, Wu J T, Chen Z W, Lin S Q, Fabelo O, Velamazan J A R, Kofu M, Nakajima K, Wolf M, Zhu J F, Wang J L, Cheng Z X, Wang G H, Tong X, Pei Y Z, Delaire O, Ma J 2023 Nat. Mater. 22 999Google Scholar

    [25]

    王国华, 焦金龙, 马杰 2019 物理 48 715Google Scholar

    Wang G H, Jiao J L, Ma J 2019 Physics 48 715Google Scholar

    [26]

    马杰, 任清勇 2017 西北大学学报(自然科学版) 47 783Google Scholar

    Ma J, Ren Q Y 2017 J. Northw. Univ. (Nat. Sci. Ed.) 47 783Google Scholar

    [27]

    任清勇, 陈闽楠, 耿艳胜, 马杰, 童欣 2021 中国科学: 物理学 力学 天文学 51 123

    Ren Q Y, Chen M N, Geng Y S, Ma J, Tong X 2021 Sci. Sin. Phys. Mech. Astron. 51 123

    [28]

    Ren Q Y, Qi J, Yu D H, Zhang Z, Song R Q, Song W L, Yuan B, Wang T H, Ren W J, Zhang Z D, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [29]

    Ren Q Y, Fu C G, Qiu Q Y, Dai S N, Liu Z Y, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L H, Tong X, Felser C, Singh D J, Zhu T J, Yang J, Ma J 2020 Nat. Commun. 11 3142Google Scholar

    [30]

    任清勇, 王建立, 李昺, 马杰, 童欣 2025 物理学报 74 012801Google Scholar

    Ren Q Y, Wang J L, Li B, Ma J, Tong X 2025 Acta Phys. Sin. 74 012801Google Scholar

    [31]

    Chen X, Weathers A, Carreys J, Mukhopadhyay S, Delaire O, Stewart D A, Mingo N, Girard S N, Ma J, Abernathy D L, Yan J, Sheshka R, Sellan D P, Meng F, Jin S, Zhou J, Shi L 2015 Nat. Commun. 6 6723Google Scholar

    [32]

    Wu J T, Lin Y F, Shu M F, Liu Y F, Ma Y P, Lin G T, Zhang C P, Jiao P F, Zhu F F, Wu Y, Ewings R A, Walker H C, Deng G C, Chi S X, Jiang S W, Baggioli M, Jin M, Wang H Z, Xie W W, Wei T R, Yang J, Shi X, Ma J 2024 Nat. Commun. 15 6248Google Scholar

    [33]

    Zhu J F, Shen X L, Ma J 2024 Innov. Energy 1 100049Google Scholar

    [34]

    Cordier G, Schäfer H, Stelter M 1984 Z. Anorg. Allg. Chem. 519 183Google Scholar

    [35]

    Holm A P, Olmstead M M, Kauzlarich S M 2003 Inorg. Chem. 42 1973Google Scholar

    [36]

    Xia S Q, Bobev S 2007 Inorg. Chem. 46 874Google Scholar

    [37]

    Xia S Q, Bobev S 2008 Inorg. Chem. 47 1919Google Scholar

    [38]

    Suen N T, Wang Y, Bobev S 2015 J. Sol. State Chem. 227 204Google Scholar

    [39]

    Kim H, Condron C L, Holm A P, Kauzlarich S M 2000 J. Am. Chem. Soc. 122 10720Google Scholar

    [40]

    Hu Y F, Cerretti G, Wille E L K, Bux S K, Kauzlarich S M 2019 J. Sol. State Chem. 271 88Google Scholar

    [41]

    Grebenkemper J H, Hu Y F, Barrett D, Gogna P, Huang C K, Bux S K, Kauzlarich S M 2015 Chem. Mater. 27 5791Google Scholar

    [42]

    Toberer E S, Cox C A, Brown S R, Ikeda T, May A F, Kauzlarich S M, Snyder G J 2008 Adv. Funct. Mater. 18 2795Google Scholar

    [43]

    Justl A P, Ricci F, Pike A, Cerretti G, Bux S K, Hautier G, Kauzlarich S M 2022 Sci. Adv. 8 3780Google Scholar

    [44]

    Mochel A, Sergueev I, Wille H C, Juranyi F, Schober H, Schweika W, Brown S R, Kauzlarich S M, Hermann R P 2011 Phys. Rev. B 84 184303Google Scholar

    [45]

    Wang Y, Hu Y J, Firdosy S A, Star K E, Fleurial J P, Ravi V A, Chen L Q, Shang S L, Liu Z K 2018 J. Appl. Phys. 123 045102Google Scholar

    [46]

    He A, Wille E L K, Moreau L M, Thomas S M, Lawrence J M, Bauer E D, Booth C H, Kauzlarich S M 2020 Phys. Rev. Mater. 4 114407Google Scholar

    [47]

    Hu M Y, Sturhahn W, Toellner T S, Mannheim P D, Brown D E, Zhao J Y, Alp E E 2003 Phys. Rev. B 67 094304Google Scholar

    [48]

    Hermann R P, Grandjean F, Long G J 2005 Am. J. Phys. 73 110Google Scholar

    [49]

    Ren F, Case E D, Sootsman J R, Kanatzidis M G, Kong H J, Uher C, Lara-Curzio E, Trejo R M 2008 Acta Mater. 56 5954Google Scholar

    [50]

    Jenkins J O, Rayne J A, and Ure R W 1972 Phys. Rev. B 5 3171Google Scholar

    [51]

    Hanus R, George J, Wood M, Bonkowski A, Cheng Y Q, Abernathy D L, Manley M E, Hautier G, Snyder G J, Hermann R P 2021 Mater. Today Phys. 18 100344Google Scholar

    [52]

    Ribeiro R A, Hadano Y, Suekuni K, Avila M A, Takabatake T 2007 J. Phys. : Condens. Matter 19 376211Google Scholar

    [53]

    Toberer E S, Brown S R, Ikeda T, Kauzlarich S M, Snyder G J 2008 Appl. Phys. Lett. 93 062110Google Scholar

    [54]

    Shi Q F, Yan Y L, Wang Y X 2014 Appl. Phys. Lett. 104 012104Google Scholar

    [55]

    Zevalkink A, Toberer E S, Zeier W G, Larsenb E F, Snyder G J 2011 Energy Environ. Sci. 4 510Google Scholar

    [56]

    Zevalkink A, Zeier W G, Pomrehn G, Schechtel E, Tremelb W, Snyder G J 2012 Energy Environ. Sci. 5 9121Google Scholar

    [57]

    Pal K, Xia Y, Wolverton C 2021 npj Comp. Mater. 7 5Google Scholar

    [58]

    Wu M H, Huang Li 2019 Phys. Rev. B 100 075207Google Scholar

    [59]

    Alekperov O Z, Nakhmedov E, Najafov A, Samedov O, Nadirova K, Gasymov V, Mahmudova G R 2020 J. Phys. D: Appl. Phys. 53 035103Google Scholar

    [60]

    Jana M K, Pal K, Warankar A, Mandal P, Waghmare U V, Biswas K 2017 J. Am. Chem. Soc. 139 4350Google Scholar

    [61]

    Cordier G, Schäfer H, Stelter M 1984 Zeitschrift für Naturforsch. B 39 727Google Scholar

    [62]

    Cordier G, Schäfer H, Stelter M 1987 Zeitschrift für Naturofsch. B 42 1268Google Scholar

    [63]

    Dutta M, Samanta M, Ghosh T, Voneshen D J, Biswas K 2021 Angew. Chem. Int. Ed. 60 4259Google Scholar

    [64]

    Lory P F, Pailhès S, Giordano V M, Euchner H, Nguyen H D, Ramlau R, Borrmann H, Schmidt M, Baitinger M, Ikeda M, Tomeš P, Mihalkovič M, Allio C, Johnson M R, Schober H, Sidis Y, Bourdarot F, Regnault L P, Ollivier J, Paschen S, Grin Y, Boissieu M D 2017 Nat. Commun. 8 491Google Scholar

    [65]

    Chen X X, Zhu J B, Qin D D, Qu N, Xue W H, Wang Y M, Zhang Q, Cai W, Guo F K, Sui J H 2021 Sci. China Mater. 64 1761Google Scholar

    [66]

    Xu Q, Zhao K P, Huang H R, Wang S, Ren Q Y, Hao X W, Wuliji H, Lei J D, Wei T R, Shi X 2024 Acta Mater. 274 120040Google Scholar

    [67]

    Lei J D, Wuliji H, Ren Q Y, Hao X W, Chen H Y, Wei T R, Zhang J W, Qiu P F, Zhao K P, Shi X 2024 Energy Environ. Sci. 17 1416Google Scholar

    [68]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [69]

    Aydemir U, Zevalkink A, Ormeci A, Gibbs Z M, Bux S, Snyder G J 2015 Chem. Mater. 27 1622Google Scholar

    [70]

    Aydemir U, Zevalkink A, Ormeci A, Bux S, Snyder G J 2016 J. Mater. Chem. A 4 1867Google Scholar

    [71]

    Chanakian S, Weber R, Aydemir U, Ormeci A, Fleurial J P, Bux S, Snyder G J 2017 J. Electron. Mater. 46 4798Google Scholar

    [72]

    Kim S J, Kanatzidis M G 2001 Inorg. Chem. 40 3781Google Scholar

    [73]

    Müller K H, Narozhnyi V N 2001 Rep. Prog. Phys. 64 943Google Scholar

    [74]

    Canfield P C, Bud’ko S L 2010 Annu. Rev. Condens. Matter Phys. 1 27Google Scholar

    [75]

    Ivanovskii A L 2011 Physics C 471 409Google Scholar

    [76]

    Tan X Y, Tener Z P, Shatruk M 2018 Acc. Chem. Res. 51 230Google Scholar

    [77]

    Kurosaki K, Uneda H, Muta H, Yamanaka S 2005 J. Appl. Phys. 97 053705Google Scholar

    [78]

    Kurosaki K, Uneda H, Muta H, Yamanaka S 2005 J. Alloys Compd. 388 122Google Scholar

    [79]

    Zhang H, Li S M, Li D D, Jin S F, Shen S J, Ying T P, Lin Z P, Li K K, Yuan D D, Zhao H Z 2015 Mater. Lett. 152 117Google Scholar

    [80]

    Lehr G J, Morelli D T, Jin H, Heremans J P 2015 J. Electron. Mater. 44 1663Google Scholar

    [81]

    Kunioka H, Kihou K, Kato D, Usui H, Iida T, Nishiate H, Kuroki K, Yamamoto A, Lee C H 2020 Inorg. Chem. 59 5828Google Scholar

    [82]

    Gascoin F, Ottensmann S, Stark D, Haile S M, Snyder G J 2005 Adv. Funct. Mater. 15 1860Google Scholar

    [83]

    May A F, McGuire M A, Singh D J, Custelcean R, Jellison G E 2011 Inorg. Chem. 50 11127Google Scholar

    [84]

    Ang R, Khan A U, Tsujii N, Takai K, Nakamura R, Mori T 2015 Angew. Chem. 127 13101Google Scholar

    [85]

    Cao Q G, Zheng J, Zhang K, Ma G 2016 J. Alloys Compd. 680 278Google Scholar

    [86]

    Peng W Y, Chanakian S, Zevalkink A 2018 Inorg. Chem. Front. 5 1744Google Scholar

    [87]

    Shuai J, Geng H Y, Lan Y C, Zhu Z, Wang C, Liu Z, Bao J M, Chu C W, Sui J H, Ren Z F 2016 Proc. Natl. Acad. Sci. U. S. A 113 E4125Google Scholar

    [88]

    Shuai J, Liu Z, Kim H S, Wang Y M, Mao J, He R, Sui J H, Ren Z F 2016 J. Mater. Chem. A 4 4312Google Scholar

    [89]

    Toberer E S, May A F, Melot B C, Larsend E F, Snyder G J 2010 Dalton Trans. 39 1046Google Scholar

    [90]

    May A F, McGuire M A, Ma J, Delaire O, Huq A, Custelcean R 2012 J. Appl. Phys. 111 033708Google Scholar

    [91]

    Ding J X, Lanigan-Atkins T, Calderón-Cueva M, Banerjee A, Abernathy D L, Said A, Zevalkink A, Delaire O 2021 Sci. Adv. 7 1449Google Scholar

    [92]

    Xin H X, Qin X Y, Jia J H, Song C J, Zhang K X, Zhang J 2009 J. Phys. D: Appl. Phys. 42 165403Google Scholar

    [93]

    Zhang K X, Qin X Y, Xin H X, Zhang J 2009 J. Alloys Compd. 484 498Google Scholar

    [94]

    Bhardwaj A, Rajput A, Shukla A K, Pulikkotil J J, Srivastava A K, Dhar A, Gupta G, Auluck S, Misra D K, Budhani R C 2013 RSC Adv. 3 8504Google Scholar

    [95]

    Bhardwaj A, Misra D K 2014 RSC Adv. 4 34552Google Scholar

    [96]

    Shuai J, Wang Y M, Kim H S, Liu Z, Sui J H, Chen S, Sui J H, Ren Z F 2015 Acta Mater. 93 187Google Scholar

    [97]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [98]

    Song L R, Zhang J W, Iversen B B 2017 J. Mater. Chem. A 5 4932Google Scholar

    [99]

    Zhang J W, Song L R, Pedersen S H, Yin H, Hung L T, Iversen B B 2017 Nat. Commun. 8 13901Google Scholar

    [100]

    Zhang J W, Song L R, Sist M, Tolborg K, Iversen B B 2018 Nat. Commun. 9 4716Google Scholar

    [101]

    Li A, Hu C L, He B, Yao M Y, Fu C G, Wang Y C, Zhao X B, Felser C, Zhu T J 2021 Nat Commun. 12 5408Google Scholar

    [102]

    Zhu Y F, Xia Y, Wang Y C, Sheng Y, Yang J, Fu C G, Li A R, Zhu T J, Luo J, Wolverton C, Snyder G J, Liu J J, Zhang W Q 2020 Research 2020 4589786Google Scholar

    [103]

    Maccioni M B, Farris R, Fiorentini V 2018 Phys. Rev. B 98 220301Google Scholar

    [104]

    Kim S H, Kim C M, Hong Y K, Sim K I, Kim J H, Onimaru T, Takabatake T, Jung M H 2015 Mater. Res. Express 2 055903Google Scholar

    [105]

    Xin J, Li G, Auffermann G, Borrmann H, Schnelle W, Gooth J, Zhao X, Zhu T J, Felser C, Fu C G 2018 Mater. Today Phys. 7 61Google Scholar

    [106]

    Jin M, Lin S Q, Li W, Zhang X Y, Pei Y Z 2021 Mater. Today Phys. 21 100508Google Scholar

    [107]

    Zhang J W, Song L R, Iversen B B 2019 npj Comp. Mater. 5 76Google Scholar

    [108]

    Peng W Y, Petretto G, Rignanese G M, Hautier G, Zevalkink A 2018 Joule 2 1879Google Scholar

    [109]

    Pauling L 1960 The Nature of the Chemical Bond (Vol. 260) (Cornell University Press

    [110]

    Kanno T, Tamaki H, Yoshiya M, Uchiyama H, Maki S, Takata M, Miyazaki Y 2021 Adv. Funct. Mater. 31 2008469Google Scholar

    [111]

    He H, Tyson C, Bobev S 2011 Inorg. Chem. 50 8375Google Scholar

    [112]

    Ono K, Kihou K, Usui H, Kuroki K, Goto Y, Lee C H 2023 ACS Omega 8 42900Google Scholar

    [113]

    Khatun M, Stoyko S S, Mar A 2013 Inorg. Chem. 52 3148Google Scholar

    [114]

    Ishida J, Iimura S, Hosono H 2018 Inorg. Chem. 57 4997Google Scholar

    [115]

    Yamashita A, Kihou K, Kunioka H, Nishiate H, Yamamoto A, Goto Y, Mizuguchi Y, Iida T, Takano Y, Lee C H 2020 J. Sol. State Chem. 291 121588Google Scholar

    [116]

    Courteau B, Gvozdetskyi V, Lee S, Cox T, Zaikina J V 2022 Z. Anorg. Allg. Chem. 648 e202200095Google Scholar

    [117]

    Gvozdetskyi V, Owens-Baird B, Hong S, Cox T, Bhaskar G, Harmer C, Sun Y, Zhang F, Wang C Z, Ho K M, Zaikina J V 2019 Chem. Mater. 31 8695Google Scholar

    [118]

    Ovchinnikov A, Bobev S 2019 J. Sol. State Chem. 270 346Google Scholar

    [119]

    Shuai J, Mao J, Song S W, Zhu Q, Sun J F, Wang Y M, He R, Zhou J W, Chen G, Singh D J, Ren Z F 2017 Energy Environ. Sci. 10 799Google Scholar

    [120]

    Sangeeta, Kumar R, Singh M 2022 J. Mater. Sci. 57 10691Google Scholar

    [121]

    Bessas D, Sergueev I, Wille H C, Person J, Ebling D, Hermann R P 2012 Phys. Rev. B 86 224301Google Scholar

    [122]

    Nielsen J W, Baenziger N C 1954 Acta Cryst. 7 132Google Scholar

    [123]

    Zhu J F, Ren Q Y, Chen C, Wang C, Shu M F, He M, Zhang C P, Le M D, Torri S, Wang C W, Wang J L, Cheng Z X, Li L S, Wang G H, Jiang Y X, Wu M Z, Qu Z, Tong X, Chen Y, Zhang Q, Ma J 2024 Nat. Commun. 15 2618Google Scholar

    [124]

    Wilson D K, Saparov B, Bobev S 2011 Z. Anorg. Allg. Chem. 637 2018Google Scholar

    [125]

    Li Y H, Zhang T, Zeng Z Y, Chen X R, Geng H Y 2022 J. Phys. : Condens. Matter 34 495701Google Scholar

    [126]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2006 Appl. Phys. Lett. 89 092108Google Scholar

    [127]

    Feng Z Z, Fu Y H, Zhang Y S, Singh D J 2021 Phys. Rev. B 103 224101Google Scholar

    [128]

    Zhang W M, Chen C, Yao H H, Xue W H, Li S, Bai F X, Huang Y F, Li X F, Lin X, Cao F, Sui J H, Wang S F, Yu B, Wang Y M, Liu X J, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [129]

    Zhou Z Z, Peng K L, Wu H X, Wang G Y, Zhou X Y 2021 Phys. Rev. Appl. 16 064034Google Scholar

    [130]

    Chen C, Xue W H, Li S, Zhang Z W, Li X F, Wang X Y, Liu Y J, Sui J H, Liu X J, Cao F, Ren Z F, Chu C W, Wang Y M, Zhang Q 2019 Proc. Natl. Acad. Sci. U. S. A 116 2831Google Scholar

    [131]

    Chen C, Feng Z Z, Yao H H, Cao F, Lei B H, Wang Y M, Chen Y, Singh D J, Zhang Q 2021 Nat. Commun. 12 5718Google Scholar

    [132]

    Wang C, Wang Q, Zhang Q, Chen C, Chen Y 2022 Chem. Mater. 34 7837Google Scholar

    [133]

    Chanakian S, Peng W Y, Meschke V, Shawon A K M A, Adamczyk J, Petkov V, Toberer E, Zevalkink A 2023 Angew. Chem. Int. Ed. 62 e202301176Google Scholar

    [134]

    Dolyniuk J A, Owens-Baird B, Wang J, Zaikina J V, Kovnir K 2016 Mater. Sci. Eng. R 108 1Google Scholar

    [135]

    Luo H, Krizan J W, Muechler L, Haldolaarachchige N, Klimczuk T, Xie W, Fuccillo M K, Felser C, Cava R J A 2015 Nat. Commun. 6 6489Google Scholar

  • 图 1  中子散射的三维示意图

    Fig. 1.  Three-dimensional schematic of neutron scattering.

    图 2  (a), (b) Yb14MnSb11的晶体结构和粉末X射线衍射谱[44]; (c) Yb14MnSb11的X射线吸收光谱[46]; (d) Cp/TT 2的变化[46]

    Fig. 2.  (a), (b) Crystal structure and rietveld refinement of powder X-ray diffraction of Yb14MnSb11[44]; (c) X-ray absorption near edge structure spectra of Yb14MnSb11[46]; (d) Cp/T vs. T 2 [46].

    图 3  (a) Yb14MnSb11的动态结构因子[44]; (b) 将图(a)数据减去弹性峰并通过玻色-爱因斯坦因子修正后的动态结构因子[44]; (c), (d)声子态密度和约化声子态密度的温度依赖性[44]

    Fig. 3.  (a) Dynamical structure factor of Yb14MnSb11[44]; (b) dynamical structure factor after subtracting the elastic line in panel (a) and correcting it by the Bose-Einstein factor[44]; (c), (d) temperature dependence of the phonon density-of-states and reduced phonon density-of-states[44].

    图 4  (a) Eu14MnSb11, Yb14MnSb11和Zn4Sb3的元素特定核非弹性散射光谱[44]; (b) Eu14MnSb11中的分波和总声子态密度(上), Yb14MnSb11, Eu14MnSb11和Zn4Sb3中Sb的分波声子态密度(中)及约化后的分波声子态密度(下)[44]

    Fig. 4.  (a) Element-specific nuclear inelastic scattering spectra measured in Eu14MnSb11, Yb14MnSb11, and Zn4Sb3[44]; (b) partial and total phonon density-of-states in Eu14MnSb11 (top), the partial phonon density-of-states (middle) and the reduced partial phonon density-of-states (bottom) in Yb14MnSb11, Eu14MnSb11, and Zn4Sb3[44].

    图 5  (a), (b) Yb14MnSb11的动态结构因子[51]; (c), (d) Yb14MnSb11加权声子态密度和声子能带结构[51]; (e) Yb14MnSb11晶格热导率$ {\kappa }_{{\mathrm{L}}} $与双通道晶格动力学模拟值的比较[5153], 其中$ {\kappa }_{{\mathrm{p}}{\mathrm{h}}} $和$ {\kappa }_{{\mathrm{d}}{\mathrm{i}}{\mathrm{f}}{\mathrm{f}}} $分别为声子-气体通道、扩散子通道

    Fig. 5.  (a), (b) Dynamical structure factor of Yb14MnSb11[51]; (c), (d) phonon density-of-states and phonon band structure Yb14MnSb11[51]; (e) comparison of the lattice thermal conductivity of Yb14MnSb11 with the simulated values of dual channel lattice dynamics[5153], $ {\kappa }_{{\mathrm{p}}{\mathrm{h}}} $, $ {\kappa }_{{\mathrm{d}}{\mathrm{i}}{\mathrm{f}}{\mathrm{f}}} $ represent phonon-gas and diffusion channel, respectively.

    图 6  (a)—(c) TlInTe2的粉末X射线衍射分析和沿不同角度的晶体结构, 椭球尺寸代表所有原子的各向异性原子位移参数大小[60]; (d) Cp/TT 2的变化[60]; (e) Cp/T 3T的变化[60]; (f)吸收系数[60]

    Fig. 6.  (a)–(c) Rietveld refinement of powder X-ray diffraction and crystal structure of TlInTe2, the anisotropic atomic displacement parameters of all the atoms plotted as ellipsoids[60]; (d) Cp/T vs. T 2 [60]; (e) Cp/T 3 vs. T[60]; (f) absorption coefficient[60].

    图 7  (a) Tl原子的原子位移参数[63]; (b)—(d) TlInTe2的加权声子态密度、声子线宽和声子寿命[63]

    Fig. 7.  (a) Atomic displacement parameters of Tl[63]; (b)–(d) neutron-weighted phonon density-of-states, phonon linewidth, and phonon lifetime of TlInTe2[63].

    图 8  (a), (b) CaMg2Bi2的晶体结构和粉末X射线衍射[83]

    Fig. 8.  (a), (b) Crystal structure and rietveld refinement of powder X-ray diffraction patterns of CaMg2Bi2[83].

    图 9  (a), (b) CaZn2Sb2和YbZn2Sb2的晶格常数及各向同性原子位移参数[90]

    Fig. 9.  (a), (b) Lattice constants and isotropic atomic displacements of CaZn2Sb2 and YbZn2Sb2[90].

    图 10  (a), (b) Mg3Sb2的晶体结构和粉末X射线衍射[91]; (c) Mg3Sb2中3个化学键的约化密度梯度与sign(λ2)ρ的函数关系[100]; (d)晶格热导率[101,102]

    Fig. 10.  (a), (b) Crystal structure and powder X-ray diffraction of Mg3Sb2[91]; (c) the noncovalent interaction analysis with reduced density gradient as a function of sign(λ2)ρ for the chemical bonds in Mg3Sb2[100]; (d) lattice thermal conductivity[101,102].

    图 11  (a) Mg3Sb2和CaMg2Sb2的声子态密度[91]; (b), (c)动态结构因子[91]; (d) Mg3Sb2的分波声子态密度[91]; (e), (f)声子态密度的温度依赖性, 并与计算结果(黑色)进行比较[91]

    Fig. 11.  (a) Phonon density-of-states of Mg3Sb2 and CaMg2Sb2[91]; (b), (c) neutron dynamical structure factor[91]; (d) calculated partial phonon density-of-states of Mg3Sb2[91]; (e), (f) temperature dependence of neutron density-of-states, and compared with the calculated results (black)[91].

    图 12  (a), (b) RbCd2As2与RbCd4As3的晶体结构关系[111]; (c) NaCd4As3的粉末X射线衍射[111]; (d), (e) RbZn2As2与RbZn4As3的晶体结构关系[111]; (f) RbZn4As3的粉末X射线衍射[112]

    Fig. 12.  (a), (b) Structural relationship between RbCd2As2 and RbCd4As3[111]; (c) rietveld refinement of powder X-ray diffraction patterns of NaCd4As3[111]; (d), (e) structural relationship between RbZn2As2 and RbZn4As3[111]; (f) rietveld refinement of powder X-ray diffraction patterns of RbZn4As3[112].

    图 13  (a) RbZn4–xCuxAs3的总热导率和晶格热导率[112]; (b) Rb, Zn, As(1)和As(2)各向同性原子位移[112]

    Fig. 13.  (a) Total thermal conductivity and lattice thermal conductivity of RbZn4–xCuxAs3[112]; (b) the isotropic atomic displacements of Rb, Zn, As(1), and As(2)[112].

    图 14  (a), (b) SrCuSb的晶体结构和粉末中子衍射[123]; (c) ACuSb格林内森常数, 橙、深蓝和酒红色点分别代表CaCuSb, SrCuSb和BaCuSb[129]; (d) ACuSb中Ca, Sr和Ba原子的各向同性原子位移参数[129]; (e), (f) Eu2Zn0.98Sb2沿[103]方向的高角环形暗场扫描透射电子显微镜图像, 紫色、蓝色和橙色球体分别代表Eu, Sb和Zn[130]; (g) Eu2ZnSb2和EuAgSb的晶格热导率[131]; (h), (i) SrCuSb和Sr2ZnSb2的三声子和四声子散射率[[132]

    Fig. 14.  (a), (b) Crystal structure and rietveld refinement of neutron powder diffraction of SrCuSb[123]; (c) Grüneisen parameter of ACuSb[129], the orange, dark blue and burgundy dots represent CaCuSb, SrCuSb and BaCuSb, respectively; (d) isotropic atomic displacements of Ca, Sr, and Ba atoms in ACuSb[129]; (e), (f) high-angle annular dark-field scanning transmission electron microscopy image along the [103] direction of Eu2Zn0.98Sb2[130], the purple, blue and orange spheres represent Eu, Sb and Zn, respectively; (g) lattice thermal conductivity of Eu2ZnSb2 and EuAgSb[131]; (h), (i) calculated three- and four-phonon scattering rates of SrCuSb and Sr2ZnSb2[132].

    图 15  (a)—(c) Sr(Cu, Ag, Zn)Sb的动态结构因子[123]; (d)—(f) (110)平面的差分电荷密度[123]; (g)各向异性原子位移参数, 插图为Sr(Cu, Ag, Zn)Sb的晶体结构示意图, 椭圆体尺寸代表所有原子的各向异性原子位移参数大小[123]

    Fig. 15.  (a)–(c) Dynamical structure factor of Sr(Cu, Ag, Zn)Sb[123]; (d)–(f) charge density differences projected in the (110) plane[123]; (g) the anisotropic atomic displacement parameters, insets show the schematic crystal structures of Sr(Cu, Ag, Zn)Sb with anisotropic atomic displacement parameters ellipsoids[123].

  • [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    Rowe D M 2006 CRC Handbook of Thermoelectrics (Boca Raton: CRC/Taylor & Francis

    [3]

    Zintl E 1939 Angew. Chem. 52 1Google Scholar

    [4]

    Laves F 1941 Naturwissenschaften 29 244Google Scholar

    [5]

    Nesper R 1990 Prog. Solid State Chem. 20 1Google Scholar

    [6]

    Shuai J, Mao J, Song S W, Zhang Q Y, Chen G, Ren Z F 2017 Mater. Today Phys. 1 74Google Scholar

    [7]

    Toberer E S, May A F, Snyder G J 2010 Chem. Mater. 22 624Google Scholar

    [8]

    Zevalkink A, Pomrehn G, Takagiwa Y, Swallow J, Snyder G Y 2013 Chem. Sus. Chem. 6 2316Google Scholar

    [9]

    Shi X, Song S W, Gao G H, Ren Z F 2024 Science 384 757Google Scholar

    [10]

    Kauzlarich S M, Brown S R, Snyder G J 2007 Dalton Trans. 21 2099Google Scholar

    [11]

    Kazem N, Kauzlarich S M 2016 Handbook on the Physics and Chemistry of Rare Earths (Vol. 50) (Holland: Elsevier) pp177–208

    [12]

    Liu K J, Zhang Z W, Chen C, Wei L H, He H L, Mao J, Zhang Q 2022 Rare Met. 41 2998Google Scholar

    [13]

    Kauzlarich S M, Devlin K P, Perez C J 2021 Thermoelectric Energy Conversion (Cambridge: Woodhead Publishing) pp157–182

    [14]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [15]

    Liu K F, Xia S Q 2019 J. Sol. State Chem. 270 252Google Scholar

    [16]

    Squires G L 2012 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press

    [17]

    Fritzsche H, Huot J, Fruchart D 2016 Neutron Scattering and Othernuclear Techniques for Hydrogen in Materials (Cham: SpringerInternational Publishing

    [18]

    Wills B T M, Carlile C J 2009 Experimental Neutron Scattering (Oxford: Oxford University Press

    [19]

    Yamani Z, Ryan D H 2010 Can. J. Phys. 88 771Google Scholar

    [20]

    Bewley R I, Eccleston R S, McEwen K A, Hayden S M, Dove M T, Bennington S M, Treadgold J R, Coleman R L S 2006 Physics B (Amsterdam, Neth.) 385-386 1029Google Scholar

    [21]

    Shirane G, Shapiro S M, Tranquada J M 2002 Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge University Press

    [22]

    Langel W 2023 ChemTexts 9 12Google Scholar

    [23]

    Chen M N, Wu J T, Huang Q, Jiao J, Dun Z L, Wang G H, Chen Z W, Lin G T, Rathinam V, Li C J, Pei Y Z, Ye F, Zhou H D, Ma J 2021 Front. Phys. 9 785801Google Scholar

    [24]

    Ren Q Y, Gupta M K, Jin M, Ding J X, Wu J T, Chen Z W, Lin S Q, Fabelo O, Velamazan J A R, Kofu M, Nakajima K, Wolf M, Zhu J F, Wang J L, Cheng Z X, Wang G H, Tong X, Pei Y Z, Delaire O, Ma J 2023 Nat. Mater. 22 999Google Scholar

    [25]

    王国华, 焦金龙, 马杰 2019 物理 48 715Google Scholar

    Wang G H, Jiao J L, Ma J 2019 Physics 48 715Google Scholar

    [26]

    马杰, 任清勇 2017 西北大学学报(自然科学版) 47 783Google Scholar

    Ma J, Ren Q Y 2017 J. Northw. Univ. (Nat. Sci. Ed.) 47 783Google Scholar

    [27]

    任清勇, 陈闽楠, 耿艳胜, 马杰, 童欣 2021 中国科学: 物理学 力学 天文学 51 123

    Ren Q Y, Chen M N, Geng Y S, Ma J, Tong X 2021 Sci. Sin. Phys. Mech. Astron. 51 123

    [28]

    Ren Q Y, Qi J, Yu D H, Zhang Z, Song R Q, Song W L, Yuan B, Wang T H, Ren W J, Zhang Z D, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [29]

    Ren Q Y, Fu C G, Qiu Q Y, Dai S N, Liu Z Y, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L H, Tong X, Felser C, Singh D J, Zhu T J, Yang J, Ma J 2020 Nat. Commun. 11 3142Google Scholar

    [30]

    任清勇, 王建立, 李昺, 马杰, 童欣 2025 物理学报 74 012801Google Scholar

    Ren Q Y, Wang J L, Li B, Ma J, Tong X 2025 Acta Phys. Sin. 74 012801Google Scholar

    [31]

    Chen X, Weathers A, Carreys J, Mukhopadhyay S, Delaire O, Stewart D A, Mingo N, Girard S N, Ma J, Abernathy D L, Yan J, Sheshka R, Sellan D P, Meng F, Jin S, Zhou J, Shi L 2015 Nat. Commun. 6 6723Google Scholar

    [32]

    Wu J T, Lin Y F, Shu M F, Liu Y F, Ma Y P, Lin G T, Zhang C P, Jiao P F, Zhu F F, Wu Y, Ewings R A, Walker H C, Deng G C, Chi S X, Jiang S W, Baggioli M, Jin M, Wang H Z, Xie W W, Wei T R, Yang J, Shi X, Ma J 2024 Nat. Commun. 15 6248Google Scholar

    [33]

    Zhu J F, Shen X L, Ma J 2024 Innov. Energy 1 100049Google Scholar

    [34]

    Cordier G, Schäfer H, Stelter M 1984 Z. Anorg. Allg. Chem. 519 183Google Scholar

    [35]

    Holm A P, Olmstead M M, Kauzlarich S M 2003 Inorg. Chem. 42 1973Google Scholar

    [36]

    Xia S Q, Bobev S 2007 Inorg. Chem. 46 874Google Scholar

    [37]

    Xia S Q, Bobev S 2008 Inorg. Chem. 47 1919Google Scholar

    [38]

    Suen N T, Wang Y, Bobev S 2015 J. Sol. State Chem. 227 204Google Scholar

    [39]

    Kim H, Condron C L, Holm A P, Kauzlarich S M 2000 J. Am. Chem. Soc. 122 10720Google Scholar

    [40]

    Hu Y F, Cerretti G, Wille E L K, Bux S K, Kauzlarich S M 2019 J. Sol. State Chem. 271 88Google Scholar

    [41]

    Grebenkemper J H, Hu Y F, Barrett D, Gogna P, Huang C K, Bux S K, Kauzlarich S M 2015 Chem. Mater. 27 5791Google Scholar

    [42]

    Toberer E S, Cox C A, Brown S R, Ikeda T, May A F, Kauzlarich S M, Snyder G J 2008 Adv. Funct. Mater. 18 2795Google Scholar

    [43]

    Justl A P, Ricci F, Pike A, Cerretti G, Bux S K, Hautier G, Kauzlarich S M 2022 Sci. Adv. 8 3780Google Scholar

    [44]

    Mochel A, Sergueev I, Wille H C, Juranyi F, Schober H, Schweika W, Brown S R, Kauzlarich S M, Hermann R P 2011 Phys. Rev. B 84 184303Google Scholar

    [45]

    Wang Y, Hu Y J, Firdosy S A, Star K E, Fleurial J P, Ravi V A, Chen L Q, Shang S L, Liu Z K 2018 J. Appl. Phys. 123 045102Google Scholar

    [46]

    He A, Wille E L K, Moreau L M, Thomas S M, Lawrence J M, Bauer E D, Booth C H, Kauzlarich S M 2020 Phys. Rev. Mater. 4 114407Google Scholar

    [47]

    Hu M Y, Sturhahn W, Toellner T S, Mannheim P D, Brown D E, Zhao J Y, Alp E E 2003 Phys. Rev. B 67 094304Google Scholar

    [48]

    Hermann R P, Grandjean F, Long G J 2005 Am. J. Phys. 73 110Google Scholar

    [49]

    Ren F, Case E D, Sootsman J R, Kanatzidis M G, Kong H J, Uher C, Lara-Curzio E, Trejo R M 2008 Acta Mater. 56 5954Google Scholar

    [50]

    Jenkins J O, Rayne J A, and Ure R W 1972 Phys. Rev. B 5 3171Google Scholar

    [51]

    Hanus R, George J, Wood M, Bonkowski A, Cheng Y Q, Abernathy D L, Manley M E, Hautier G, Snyder G J, Hermann R P 2021 Mater. Today Phys. 18 100344Google Scholar

    [52]

    Ribeiro R A, Hadano Y, Suekuni K, Avila M A, Takabatake T 2007 J. Phys. : Condens. Matter 19 376211Google Scholar

    [53]

    Toberer E S, Brown S R, Ikeda T, Kauzlarich S M, Snyder G J 2008 Appl. Phys. Lett. 93 062110Google Scholar

    [54]

    Shi Q F, Yan Y L, Wang Y X 2014 Appl. Phys. Lett. 104 012104Google Scholar

    [55]

    Zevalkink A, Toberer E S, Zeier W G, Larsenb E F, Snyder G J 2011 Energy Environ. Sci. 4 510Google Scholar

    [56]

    Zevalkink A, Zeier W G, Pomrehn G, Schechtel E, Tremelb W, Snyder G J 2012 Energy Environ. Sci. 5 9121Google Scholar

    [57]

    Pal K, Xia Y, Wolverton C 2021 npj Comp. Mater. 7 5Google Scholar

    [58]

    Wu M H, Huang Li 2019 Phys. Rev. B 100 075207Google Scholar

    [59]

    Alekperov O Z, Nakhmedov E, Najafov A, Samedov O, Nadirova K, Gasymov V, Mahmudova G R 2020 J. Phys. D: Appl. Phys. 53 035103Google Scholar

    [60]

    Jana M K, Pal K, Warankar A, Mandal P, Waghmare U V, Biswas K 2017 J. Am. Chem. Soc. 139 4350Google Scholar

    [61]

    Cordier G, Schäfer H, Stelter M 1984 Zeitschrift für Naturforsch. B 39 727Google Scholar

    [62]

    Cordier G, Schäfer H, Stelter M 1987 Zeitschrift für Naturofsch. B 42 1268Google Scholar

    [63]

    Dutta M, Samanta M, Ghosh T, Voneshen D J, Biswas K 2021 Angew. Chem. Int. Ed. 60 4259Google Scholar

    [64]

    Lory P F, Pailhès S, Giordano V M, Euchner H, Nguyen H D, Ramlau R, Borrmann H, Schmidt M, Baitinger M, Ikeda M, Tomeš P, Mihalkovič M, Allio C, Johnson M R, Schober H, Sidis Y, Bourdarot F, Regnault L P, Ollivier J, Paschen S, Grin Y, Boissieu M D 2017 Nat. Commun. 8 491Google Scholar

    [65]

    Chen X X, Zhu J B, Qin D D, Qu N, Xue W H, Wang Y M, Zhang Q, Cai W, Guo F K, Sui J H 2021 Sci. China Mater. 64 1761Google Scholar

    [66]

    Xu Q, Zhao K P, Huang H R, Wang S, Ren Q Y, Hao X W, Wuliji H, Lei J D, Wei T R, Shi X 2024 Acta Mater. 274 120040Google Scholar

    [67]

    Lei J D, Wuliji H, Ren Q Y, Hao X W, Chen H Y, Wei T R, Zhang J W, Qiu P F, Zhao K P, Shi X 2024 Energy Environ. Sci. 17 1416Google Scholar

    [68]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [69]

    Aydemir U, Zevalkink A, Ormeci A, Gibbs Z M, Bux S, Snyder G J 2015 Chem. Mater. 27 1622Google Scholar

    [70]

    Aydemir U, Zevalkink A, Ormeci A, Bux S, Snyder G J 2016 J. Mater. Chem. A 4 1867Google Scholar

    [71]

    Chanakian S, Weber R, Aydemir U, Ormeci A, Fleurial J P, Bux S, Snyder G J 2017 J. Electron. Mater. 46 4798Google Scholar

    [72]

    Kim S J, Kanatzidis M G 2001 Inorg. Chem. 40 3781Google Scholar

    [73]

    Müller K H, Narozhnyi V N 2001 Rep. Prog. Phys. 64 943Google Scholar

    [74]

    Canfield P C, Bud’ko S L 2010 Annu. Rev. Condens. Matter Phys. 1 27Google Scholar

    [75]

    Ivanovskii A L 2011 Physics C 471 409Google Scholar

    [76]

    Tan X Y, Tener Z P, Shatruk M 2018 Acc. Chem. Res. 51 230Google Scholar

    [77]

    Kurosaki K, Uneda H, Muta H, Yamanaka S 2005 J. Appl. Phys. 97 053705Google Scholar

    [78]

    Kurosaki K, Uneda H, Muta H, Yamanaka S 2005 J. Alloys Compd. 388 122Google Scholar

    [79]

    Zhang H, Li S M, Li D D, Jin S F, Shen S J, Ying T P, Lin Z P, Li K K, Yuan D D, Zhao H Z 2015 Mater. Lett. 152 117Google Scholar

    [80]

    Lehr G J, Morelli D T, Jin H, Heremans J P 2015 J. Electron. Mater. 44 1663Google Scholar

    [81]

    Kunioka H, Kihou K, Kato D, Usui H, Iida T, Nishiate H, Kuroki K, Yamamoto A, Lee C H 2020 Inorg. Chem. 59 5828Google Scholar

    [82]

    Gascoin F, Ottensmann S, Stark D, Haile S M, Snyder G J 2005 Adv. Funct. Mater. 15 1860Google Scholar

    [83]

    May A F, McGuire M A, Singh D J, Custelcean R, Jellison G E 2011 Inorg. Chem. 50 11127Google Scholar

    [84]

    Ang R, Khan A U, Tsujii N, Takai K, Nakamura R, Mori T 2015 Angew. Chem. 127 13101Google Scholar

    [85]

    Cao Q G, Zheng J, Zhang K, Ma G 2016 J. Alloys Compd. 680 278Google Scholar

    [86]

    Peng W Y, Chanakian S, Zevalkink A 2018 Inorg. Chem. Front. 5 1744Google Scholar

    [87]

    Shuai J, Geng H Y, Lan Y C, Zhu Z, Wang C, Liu Z, Bao J M, Chu C W, Sui J H, Ren Z F 2016 Proc. Natl. Acad. Sci. U. S. A 113 E4125Google Scholar

    [88]

    Shuai J, Liu Z, Kim H S, Wang Y M, Mao J, He R, Sui J H, Ren Z F 2016 J. Mater. Chem. A 4 4312Google Scholar

    [89]

    Toberer E S, May A F, Melot B C, Larsend E F, Snyder G J 2010 Dalton Trans. 39 1046Google Scholar

    [90]

    May A F, McGuire M A, Ma J, Delaire O, Huq A, Custelcean R 2012 J. Appl. Phys. 111 033708Google Scholar

    [91]

    Ding J X, Lanigan-Atkins T, Calderón-Cueva M, Banerjee A, Abernathy D L, Said A, Zevalkink A, Delaire O 2021 Sci. Adv. 7 1449Google Scholar

    [92]

    Xin H X, Qin X Y, Jia J H, Song C J, Zhang K X, Zhang J 2009 J. Phys. D: Appl. Phys. 42 165403Google Scholar

    [93]

    Zhang K X, Qin X Y, Xin H X, Zhang J 2009 J. Alloys Compd. 484 498Google Scholar

    [94]

    Bhardwaj A, Rajput A, Shukla A K, Pulikkotil J J, Srivastava A K, Dhar A, Gupta G, Auluck S, Misra D K, Budhani R C 2013 RSC Adv. 3 8504Google Scholar

    [95]

    Bhardwaj A, Misra D K 2014 RSC Adv. 4 34552Google Scholar

    [96]

    Shuai J, Wang Y M, Kim H S, Liu Z, Sui J H, Chen S, Sui J H, Ren Z F 2015 Acta Mater. 93 187Google Scholar

    [97]

    Tamaki H, Sato H K, Kanno T 2016 Adv. Mater. 28 10182Google Scholar

    [98]

    Song L R, Zhang J W, Iversen B B 2017 J. Mater. Chem. A 5 4932Google Scholar

    [99]

    Zhang J W, Song L R, Pedersen S H, Yin H, Hung L T, Iversen B B 2017 Nat. Commun. 8 13901Google Scholar

    [100]

    Zhang J W, Song L R, Sist M, Tolborg K, Iversen B B 2018 Nat. Commun. 9 4716Google Scholar

    [101]

    Li A, Hu C L, He B, Yao M Y, Fu C G, Wang Y C, Zhao X B, Felser C, Zhu T J 2021 Nat Commun. 12 5408Google Scholar

    [102]

    Zhu Y F, Xia Y, Wang Y C, Sheng Y, Yang J, Fu C G, Li A R, Zhu T J, Luo J, Wolverton C, Snyder G J, Liu J J, Zhang W Q 2020 Research 2020 4589786Google Scholar

    [103]

    Maccioni M B, Farris R, Fiorentini V 2018 Phys. Rev. B 98 220301Google Scholar

    [104]

    Kim S H, Kim C M, Hong Y K, Sim K I, Kim J H, Onimaru T, Takabatake T, Jung M H 2015 Mater. Res. Express 2 055903Google Scholar

    [105]

    Xin J, Li G, Auffermann G, Borrmann H, Schnelle W, Gooth J, Zhao X, Zhu T J, Felser C, Fu C G 2018 Mater. Today Phys. 7 61Google Scholar

    [106]

    Jin M, Lin S Q, Li W, Zhang X Y, Pei Y Z 2021 Mater. Today Phys. 21 100508Google Scholar

    [107]

    Zhang J W, Song L R, Iversen B B 2019 npj Comp. Mater. 5 76Google Scholar

    [108]

    Peng W Y, Petretto G, Rignanese G M, Hautier G, Zevalkink A 2018 Joule 2 1879Google Scholar

    [109]

    Pauling L 1960 The Nature of the Chemical Bond (Vol. 260) (Cornell University Press

    [110]

    Kanno T, Tamaki H, Yoshiya M, Uchiyama H, Maki S, Takata M, Miyazaki Y 2021 Adv. Funct. Mater. 31 2008469Google Scholar

    [111]

    He H, Tyson C, Bobev S 2011 Inorg. Chem. 50 8375Google Scholar

    [112]

    Ono K, Kihou K, Usui H, Kuroki K, Goto Y, Lee C H 2023 ACS Omega 8 42900Google Scholar

    [113]

    Khatun M, Stoyko S S, Mar A 2013 Inorg. Chem. 52 3148Google Scholar

    [114]

    Ishida J, Iimura S, Hosono H 2018 Inorg. Chem. 57 4997Google Scholar

    [115]

    Yamashita A, Kihou K, Kunioka H, Nishiate H, Yamamoto A, Goto Y, Mizuguchi Y, Iida T, Takano Y, Lee C H 2020 J. Sol. State Chem. 291 121588Google Scholar

    [116]

    Courteau B, Gvozdetskyi V, Lee S, Cox T, Zaikina J V 2022 Z. Anorg. Allg. Chem. 648 e202200095Google Scholar

    [117]

    Gvozdetskyi V, Owens-Baird B, Hong S, Cox T, Bhaskar G, Harmer C, Sun Y, Zhang F, Wang C Z, Ho K M, Zaikina J V 2019 Chem. Mater. 31 8695Google Scholar

    [118]

    Ovchinnikov A, Bobev S 2019 J. Sol. State Chem. 270 346Google Scholar

    [119]

    Shuai J, Mao J, Song S W, Zhu Q, Sun J F, Wang Y M, He R, Zhou J W, Chen G, Singh D J, Ren Z F 2017 Energy Environ. Sci. 10 799Google Scholar

    [120]

    Sangeeta, Kumar R, Singh M 2022 J. Mater. Sci. 57 10691Google Scholar

    [121]

    Bessas D, Sergueev I, Wille H C, Person J, Ebling D, Hermann R P 2012 Phys. Rev. B 86 224301Google Scholar

    [122]

    Nielsen J W, Baenziger N C 1954 Acta Cryst. 7 132Google Scholar

    [123]

    Zhu J F, Ren Q Y, Chen C, Wang C, Shu M F, He M, Zhang C P, Le M D, Torri S, Wang C W, Wang J L, Cheng Z X, Li L S, Wang G H, Jiang Y X, Wu M Z, Qu Z, Tong X, Chen Y, Zhang Q, Ma J 2024 Nat. Commun. 15 2618Google Scholar

    [124]

    Wilson D K, Saparov B, Bobev S 2011 Z. Anorg. Allg. Chem. 637 2018Google Scholar

    [125]

    Li Y H, Zhang T, Zeng Z Y, Chen X R, Geng H Y 2022 J. Phys. : Condens. Matter 34 495701Google Scholar

    [126]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2006 Appl. Phys. Lett. 89 092108Google Scholar

    [127]

    Feng Z Z, Fu Y H, Zhang Y S, Singh D J 2021 Phys. Rev. B 103 224101Google Scholar

    [128]

    Zhang W M, Chen C, Yao H H, Xue W H, Li S, Bai F X, Huang Y F, Li X F, Lin X, Cao F, Sui J H, Wang S F, Yu B, Wang Y M, Liu X J, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [129]

    Zhou Z Z, Peng K L, Wu H X, Wang G Y, Zhou X Y 2021 Phys. Rev. Appl. 16 064034Google Scholar

    [130]

    Chen C, Xue W H, Li S, Zhang Z W, Li X F, Wang X Y, Liu Y J, Sui J H, Liu X J, Cao F, Ren Z F, Chu C W, Wang Y M, Zhang Q 2019 Proc. Natl. Acad. Sci. U. S. A 116 2831Google Scholar

    [131]

    Chen C, Feng Z Z, Yao H H, Cao F, Lei B H, Wang Y M, Chen Y, Singh D J, Zhang Q 2021 Nat. Commun. 12 5718Google Scholar

    [132]

    Wang C, Wang Q, Zhang Q, Chen C, Chen Y 2022 Chem. Mater. 34 7837Google Scholar

    [133]

    Chanakian S, Peng W Y, Meschke V, Shawon A K M A, Adamczyk J, Petkov V, Toberer E, Zevalkink A 2023 Angew. Chem. Int. Ed. 62 e202301176Google Scholar

    [134]

    Dolyniuk J A, Owens-Baird B, Wang J, Zaikina J V, Kovnir K 2016 Mater. Sci. Eng. R 108 1Google Scholar

    [135]

    Luo H, Krizan J W, Muechler L, Haldolaarachchige N, Klimczuk T, Xie W, Fuccillo M K, Felser C, Cava R J A 2015 Nat. Commun. 6 6489Google Scholar

  • [1] 任清勇, 王建立, 李昺, 马杰, 童欣. 复杂晶格动力学与能源材料的中子散射研究. 物理学报, 2025, 74(1): 012801. doi: 10.7498/aps.74.20241178
    [2] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符. 物理学报, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [3] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [4] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [5] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [9] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [10] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [11] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [12] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [13] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [14] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [15] 刘玮书, 张波萍, 李敬锋, 张海龙, 赵立东. Co1-xNixSb3-ySey热电输运中晶界和点缺陷的耦合散射效应. 物理学报, 2008, 57(6): 3791-3797. doi: 10.7498/aps.57.3791
    [16] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究. 物理学报, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [17] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [18] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能. 物理学报, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [19] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. p型BayFexCo4-xSb12化合物的热电性能. 物理学报, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [20] 唐新峰, 陈立东, 後藤 孝, 平井 敏雄, 袁润章. Ce填充分数对p型CeyFe1.5Co2.5Sb12化合 物热电传输特性的影响. 物理学报, 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
计量
  • 文章访问数:  172
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2024-12-26
  • 上网日期:  2024-12-31
  • 刊出日期:  2025-01-05

/

返回文章
返回