搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器

何希文 马德岳 张政 王荣平 刘继桥 陈卫标 周治平

引用本文:
Citation:

基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器

何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平
cstr: 32037.14.aps.74.20241243

Ta2O5 980/1550 nm wavelength multiplexer/demultiplexer based on segmented cascaded multimode interference

HE Xiwen, MA Deyue, ZHANG Zheng, WANG Rongping, LIU Jiqiao, CHEN Weibiao, ZHOU Zhiping
cstr: 32037.14.aps.74.20241243
PDF
HTML
导出引用
  • 提出一种紧凑的基于多模干涉效应的氧化钽($ {{\rm{Ta_2}} {\rm{O_5}}}$)波长双工器, 用于实现980和1550 nm波长的复用和解复用. 该器件采用对称干涉和配对干涉级联的混合多模干涉波导结构, 在不利用亚波长光栅等复杂结构调控泵浦光和信号光拍长的基础上, 将分段多模干涉波导的总长度缩短为普通配对型多模干涉波导结构的1/3. 采用三维有限时域差分(3D-FDTD)工具对建立的模型进行分析和优化, 结果表明所设计的MMI型双工器具有较低的插损和较高的工艺容差性, 在980 nm处插损为0.4 dB, 1550 nm处插损为0.8 dB, 消光比均优于16 dB. 该器件在1550 nm波长周围的1 dB带宽达150 nm, 在980 nm波长周围的1 dB带宽达70 nm. 文中设计的多级干涉结构极大地降低了MMI器件的设计难度并缩小了980/1550 nm波分复用/解复用器的整体尺寸, 有望应用在片上集成的掺铒波导放大器和激光器领域. 此外, 不同多模干涉机制级联的设计思路为分离两个中心波长相隔较远的光信号提供了技术参考, 在通信波段和中红外波段波分复用/解复用器件上具有潜在的应用价值.
    On-chip erbium-doped/erbium-ytterbium co-doped waveguide amplifiers (EDWAs/EYCDWAs) have received extensive research attention in recent years. However, there has been relatively little research on integrated wavelength division multiplexing/demultiplexing devices for 980-nm pump light and 1550-nm signal light. This work aims to propose a compact Ta2O5 diplexer for 980/1550-nm wavelengths based on multimode interference effects. The device utilizes a structure that combines symmetric interference with a cascaded paired interference design, thereby reducing the total length of the segmented multimode interference waveguide to one-third that of a conventional paired multimode interference waveguide. This is achieved without using any complex structure, such as subwavelength gratings, to adjust the beat length of the pump and signal light. The three-dimensional finite difference time domain (3D-FDTD) tool is used to analyze and optimize the established model. The results demonstrate that the designed MMI diplexer has low insertion loss and high process tolerance, with an insertion loss of 0.4 dB at 980 nm and 0.8 dB at 1550 nm, and that the extinction ratios are both better than 16 dB. Moreover, the 1 dB bandwidth reaches up to 150 nm near the 1550 nm wavelength and up to 70 nm near the 980 nm wavelength. The segmented structure designed in this work greatly reduces both the difficulty in designing the MMI devices and the overall size of 980/1550 nm wavelength division multiplexers/demultiplexers. It is expected to be applied to on-chip integrated erbium-doped waveguide amplifiers and lasers. In addition, the segmented design method of cascading the hybrid multimode interference mechanism provides a technical reference for separating two optical signals with long center wavelengths such as 800/1310 nm and 1550/2000 nm, and has potential application value in communication and mid infrared diplexing devices.
      通信作者: 周治平, zjzhou@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62035001)、中国科学院国际伙伴计划(批准号: 18123KYSB20210013)和上海市“科技创新行动计划”科技支撑碳达峰碳中和专项(批准号: 22dz208700)资助的课题.
      Corresponding author: ZHOU Zhiping, zjzhou@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62035001), the International Partnership Program of Chinese Academy of Sciences (Grant No. 18123KYSB20210013), and the Shanghai Science and Technology Innovation Action Plan, China (Grant No. 22dz208700).
    [1]

    Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar

    [2]

    Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar

    [3]

    Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109

    [4]

    Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar

    [5]

    Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar

    [6]

    Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar

    [7]

    Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar

    [8]

    Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar

    [9]

    Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar

    [10]

    Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar

    [11]

    Kik P, Polman A 1998 MRS. Bull. 23 48

    [12]

    Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar

    [13]

    Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5

    [14]

    Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar

    [15]

    Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765

    [16]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [17]

    Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar

    [18]

    Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar

    [19]

    Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar

    [20]

    Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar

    [21]

    Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar

    [22]

    He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar

    [23]

    Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar

    [24]

    Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar

    [25]

    Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar

    [26]

    Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar

    [27]

    Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar

    [28]

    Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1

    [29]

    Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371

    [30]

    Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar

    [31]

    Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107

    [32]

    Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839

    [33]

    Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar

    [34]

    Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar

    [35]

    Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar

    [36]

    Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6

    [37]

    Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar

    [38]

    Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar

    [39]

    李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53

    Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53

    [40]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

  • 图 1  泵浦光和信号光的拍长比与多模波导宽度规律 曲线

    Fig. 1.  Relationship curve between beat length ratio ($ q/p $) and multimode waveguide width.

    图 2  分段多模干涉耦合器结构示意图

    Fig. 2.  Schematic diagram of two-section multimode interference coupler.

    图 3  分段MMI的光场分布图 (a) 1550 nm; (b) 980 nm

    Fig. 3.  The field distributions of the two-section MMI: (a) 1550 nm; (b) 980 nm.

    图 4  分段MMI的传输谱线图 (a) 1550 nm波段的IL/CT; (b) 980 nm波段的IL/CT

    Fig. 4.  Transmission spectrum of the two-section MMI: (a) IL/CT in 1550 nm band; (b) IL/CT in 980 nm band.

    图 5  性能参数随薄膜厚度的变化 (a) IL; (b) CT

    Fig. 5.  Performances with vary film thickness: (a) IL; (b) CT.

    图 6  性能参数随第 1 级MMI结构参数的变化 (a) $ W_{{\mathrm{M1}}} $; (b) $ L_{{\mathrm{M1}}} $

    Fig. 6.  Performances with vary 1 st level MMI structural parameters: (a) $ W_{{\mathrm{M1}}} $; (b) $ L_{{\mathrm{M1}}} $.

    图 7  性能参数随第 2 级MMI结构参数的变化 (a) $ W_{{\mathrm{M2}}} $; (b) $ L_{{\mathrm{M2}}} $

    Fig. 7.  Performances with vary 2 nd level MMI structural parameters: (a) $ W_{{\mathrm{M2}}} $; (b) $ L_{{\mathrm{M2}}} $.

    表 1  不同干涉机制MMI的输入条件和成像位置[39]

    Table 1.  Input conditions and imaging positions of MMI with different interference mechanisms[39].

    一般干涉 配对干涉 对称干涉
    输入 × 输出 N × N 2 × N 1 × N
    第1个单重像位置 $ 3 L_{\text{π}} $ $ L_{\text{π}}$ $ 3L_{\text{π}}/4 $
    第1个N重像位置 $ 3 L_{\text{π}}/N $ $ L_{\text{π}}/N $ $ 3 L_{\text{π}}/(4 N) $
    限制条件 $ C_{{\rm{\nu}}} = 0,~~ \nu = 2, 5, 8\cdots $ $ C_{{\rm{\nu}}} = 0, ~~\nu = 1, 3, 5\cdots$
    输入位置 任意 $ \pm W_{{\rm{e}}}/6 $ 0
    下载: 导出CSV
  • [1]

    Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar

    [2]

    Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar

    [3]

    Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109

    [4]

    Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar

    [5]

    Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar

    [6]

    Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar

    [7]

    Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar

    [8]

    Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar

    [9]

    Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar

    [10]

    Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar

    [11]

    Kik P, Polman A 1998 MRS. Bull. 23 48

    [12]

    Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar

    [13]

    Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5

    [14]

    Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar

    [15]

    Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765

    [16]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [17]

    Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar

    [18]

    Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar

    [19]

    Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar

    [20]

    Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar

    [21]

    Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar

    [22]

    He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar

    [23]

    Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar

    [24]

    Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar

    [25]

    Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar

    [26]

    Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar

    [27]

    Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar

    [28]

    Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1

    [29]

    Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371

    [30]

    Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar

    [31]

    Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107

    [32]

    Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839

    [33]

    Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar

    [34]

    Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar

    [35]

    Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar

    [36]

    Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6

    [37]

    Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar

    [38]

    Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar

    [39]

    李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53

    Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53

    [40]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

  • [1] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [2] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [3] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [4] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [5] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [6] 杜炳政, 朱京平, 毛玉政, 刘宏, 王凯, 侯洵. 光栅周期包含的Bragg层数对Bragg型凹面衍射光栅的影响. 物理学报, 2017, 66(22): 224202. doi: 10.7498/aps.66.224202
    [7] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析. 物理学报, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [8] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [9] 李宝, 杜炳政, 朱京平. Bragg反射齿型平面凹面衍射光栅性能研究. 物理学报, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [10] 王光义, 袁方. 级联混沌及其动力学特性研究. 物理学报, 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [11] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [12] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [13] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化. 物理学报, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [14] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [15] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析. 物理学报, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [16] 于天宝, 王明华, 江晓清, 杨建义. 三平行光子晶体单模波导的耦合特性及其应用. 物理学报, 2006, 55(4): 1851-1856. doi: 10.7498/aps.55.1851
    [17] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器. 物理学报, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [18] 李成仁, 宋昌烈, 饶文雄, 李淑凤. 两片掺铒玻璃样品级联荧光光谱的实验研究. 物理学报, 2003, 52(3): 751-755. doi: 10.7498/aps.52.751
    [19] 刘雪明, 张明德, 孙小菡, 刘琳. 一种基于二阶非线性级联的新颖全光开关. 物理学报, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [20] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
计量
  • 文章访问数:  310
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-12-03
  • 上网日期:  2024-12-10
  • 刊出日期:  2025-01-20

/

返回文章
返回