-
提出一种紧凑的基于多模干涉效应的氧化钽($ {{\rm{Ta_2}} {\rm{O_5}}}$)波长双工器, 用于实现980和1550 nm波长的复用和解复用. 该器件采用对称干涉和配对干涉级联的混合多模干涉波导结构, 在不利用亚波长光栅等复杂结构调控泵浦光和信号光拍长的基础上, 将分段多模干涉波导的总长度缩短为普通配对型多模干涉波导结构的1/3. 采用三维有限时域差分(3D-FDTD)工具对建立的模型进行分析和优化, 结果表明所设计的MMI型双工器具有较低的插损和较高的工艺容差性, 在980 nm处插损为0.4 dB, 1550 nm处插损为0.8 dB, 消光比均优于16 dB. 该器件在1550 nm波长周围的1 dB带宽达150 nm, 在980 nm波长周围的1 dB带宽达70 nm. 文中设计的多级干涉结构极大地降低了MMI器件的设计难度并缩小了980/1550 nm波分复用/解复用器的整体尺寸, 有望应用在片上集成的掺铒波导放大器和激光器领域. 此外, 不同多模干涉机制级联的设计思路为分离两个中心波长相隔较远的光信号提供了技术参考, 在通信波段和中红外波段波分复用/解复用器件上具有潜在的应用价值.On-chip erbium-doped/erbium-ytterbium co-doped waveguide amplifiers (EDWAs/EYCDWAs) have received extensive research attention in recent years. However, there has been relatively little research on integrated wavelength division multiplexing/demultiplexing devices for 980-nm pump light and 1550-nm signal light. This work aims to propose a compact Ta2O5 diplexer for 980/1550-nm wavelengths based on multimode interference effects. The device utilizes a structure that combines symmetric interference with a cascaded paired interference design, thereby reducing the total length of the segmented multimode interference waveguide to one-third that of a conventional paired multimode interference waveguide. This is achieved without using any complex structure, such as subwavelength gratings, to adjust the beat length of the pump and signal light. The three-dimensional finite difference time domain (3D-FDTD) tool is used to analyze and optimize the established model. The results demonstrate that the designed MMI diplexer has low insertion loss and high process tolerance, with an insertion loss of 0.4 dB at 980 nm and 0.8 dB at 1550 nm, and that the extinction ratios are both better than 16 dB. Moreover, the 1 dB bandwidth reaches up to 150 nm near the 1550 nm wavelength and up to 70 nm near the 980 nm wavelength. The segmented structure designed in this work greatly reduces both the difficulty in designing the MMI devices and the overall size of 980/1550 nm wavelength division multiplexers/demultiplexers. It is expected to be applied to on-chip integrated erbium-doped waveguide amplifiers and lasers. In addition, the segmented design method of cascading the hybrid multimode interference mechanism provides a technical reference for separating two optical signals with long center wavelengths such as 800/1310 nm and 1550/2000 nm, and has potential application value in communication and mid infrared diplexing devices.
-
Keywords:
- multimode inteference /
- cascade /
- wavelength division multiplexing /
- Ta2O5
[1] Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar
[2] Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar
[3] Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109
[4] Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar
[5] Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar
[6] Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar
[7] Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar
[8] Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar
[9] Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar
[10] Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar
[11] Kik P, Polman A 1998 MRS. Bull. 23 48
[12] Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar
[13] Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5
[14] Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar
[15] Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765
[16] Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar
[17] Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar
[18] Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar
[19] Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar
[20] Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar
[21] Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar
[22] He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar
[23] Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar
[24] Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar
[25] Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar
[26] Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar
[27] Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar
[28] Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1
[29] Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371
[30] Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar
[31] Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107
[32] Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839
[33] Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar
[34] Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar
[35] Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar
[36] Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6
[37] Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar
[38] Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar
[39] 李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53
Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53
[40] 汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar
Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar
-
表 1 不同干涉机制MMI的输入条件和成像位置[39]
Table 1. Input conditions and imaging positions of MMI with different interference mechanisms[39].
一般干涉 配对干涉 对称干涉 输入 × 输出 N × N 2 × N 1 × N 第1个单重像位置 $ 3 L_{\text{π}} $ $ L_{\text{π}}$ $ 3L_{\text{π}}/4 $ 第1个N重像位置 $ 3 L_{\text{π}}/N $ $ L_{\text{π}}/N $ $ 3 L_{\text{π}}/(4 N) $ 限制条件 — $ C_{{\rm{\nu}}} = 0,~~ \nu = 2, 5, 8\cdots $ $ C_{{\rm{\nu}}} = 0, ~~\nu = 1, 3, 5\cdots$ 输入位置 任意 $ \pm W_{{\rm{e}}}/6 $ 0 -
[1] Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar
[2] Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar
[3] Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109
[4] Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar
[5] Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar
[6] Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar
[7] Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar
[8] Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar
[9] Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar
[10] Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar
[11] Kik P, Polman A 1998 MRS. Bull. 23 48
[12] Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar
[13] Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5
[14] Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar
[15] Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765
[16] Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar
[17] Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar
[18] Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar
[19] Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar
[20] Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar
[21] Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar
[22] He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar
[23] Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar
[24] Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar
[25] Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar
[26] Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar
[27] Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar
[28] Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1
[29] Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371
[30] Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar
[31] Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107
[32] Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839
[33] Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar
[34] Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar
[35] Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar
[36] Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6
[37] Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar
[38] Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar
[39] 李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53
Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53
[40] 汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar
Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar
计量
- 文章访问数: 310
- PDF下载量: 17
- 被引次数: 0