搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合光学反馈以及光学锁相环的量子级联激光器线宽压窄和频率控制技术研究

高健 焦康 赵刚 尹润涛 杨家琪 闫晓娟 陈宛宁 马维光 贾锁堂

引用本文:
Citation:

结合光学反馈以及光学锁相环的量子级联激光器线宽压窄和频率控制技术研究

高健, 焦康, 赵刚, 尹润涛, 杨家琪, 闫晓娟, 陈宛宁, 马维光, 贾锁堂

Research on Linewidth Narrowing and Frequency Control Technology of Quantum Cascade Lasers Based on Optical Feedback and Optical Phase-Locked Loops

Gao Jian, Jiao Kang, Zhao Gang, Yin Run-Tao, Yang Jia-Qi, Yan Xiao-Juan, Chen Wan-Ning, Ma Wei-Guang, Jia Suo-Tang
PDF
导出引用
  • 中红外波段缺乏窄线宽、可精确调谐的激光源,限制了中红外精密光谱的发展.本文介绍了一种结合强光学反馈和光学锁相环技术的量子级联激光器(QCL)频率控制技术,通过强光学反馈先抑制QCL频率噪声中的高频成分,再使用光学锁相环将激光频率偏频锁定到另外一个超稳中红外激光源上.通过相位超前电路拓展锁定带宽,系统锁定后,将功率谱中心窄拍频信号提高66 dBm,低频区域相位噪声抑制到-81 dBc/Hz@2kHz,高频区域相位噪声抑制到101 dBc/Hz@2MHz,激光器线宽从3.8 MHz被压窄到3 Hz.最终,我们利用该激光器进行了腔衰荡光谱信号的测量,相较于未锁定激光,信号的信噪比提升了5倍。
    The mid-infrared (MIR) spectral region, which corresponds to molecular vibrational and rotational energy level transitions, contains a wealth of molecular energy level information. By employing techniques such as Cavity Ring-Down Spectroscopy (CRDS), precise measurements of MIR spectra can be conducted, enabling the validation of fundamental physical laws, the inversion of fundamental physical constants, and the detection of trace gases. However, technical noise from temperature fluctuations, mechanical vibrations, and current noise causes free-running quantum cascade laser (QCL) to suffer from high-frequency noise, typically broadening the linewidth to the MHz range, thus reducing spectral resolution. Moreover, long-term drift in the laser frequency due to temperature and current fluctuations hinders high-precision spectroscopy, particularly for narrow-linewidth nonlinear spectroscopy, such as saturated absorption and multiphoton absorption spectroscopy.This paper presents a method that combines optical feedback with an optical phase-locked loop (OPLL) for offset frequency locking, aimed at generating a mid-infrared (MIR) laser with superior frequency characteristics. Strong optical feedback is employed to narrow the linewidth of the quantum cascade laser (QCL) acting as slave laser, thereby alleviating the challenges associated with phase locking. The OPLL is leverage to frequency-offset lock the slave laser to an ultra-narrow laser. By adjusting the offset frequency, fine control of the slave laser is achieved. To ensure tight phase locking, the OPLL is based on the ADF4007, incorporating a phase lead circuit to compensate for phase lag, effectively broadening the system's loop bandwidth.In this paper, initially, the fundamental principles of the optical phase-locked loop were theoretically analyzed, and a basic model was established. The influence of loop bandwidth on locking performance was also investigated. Upon achieving phase locking using the combined optical feedback and OPLL system, the magnitude of the beatnote of the two lasers was improved by 66 dBm, with phase noise suppressed to -81 dBc/Hz@2kHz in the low-frequency region and -101 dBc/Hz@2MHz in the high-frequency region.The frequency noise power spectral density of both the master and slave lasers was obtained via the error signal in the closed-loop system. Significant suppression of frequency noise was observed for the slave laser across both low- and high-frequency regions, with suppression ratios reaching 86 dB at 100 Hz and 55 dB at 400 kHz. The frequency noise of the slave laser in the low-frequency domain was found to be comparable to that of the master laser. Based on the white noise response region in the frequency noise spectrum (from 200 Hz to 400 kHz), the locked slave laser linewidth was determined to be approximately 3 Hz, narrowing the initial MHz-level linewidth to match the Hz-level linewidth of the master laser. Finally, the locked laser is used to conduct cavity ringdown spectroscopy, achieving an improvement factor of 5 in the signal-to-noise ratio of the ringdown signal.In future work, this frequency-stabilized laser will be applied to high-precision spectroscopy for the detection of radiocarbon isotopes.
  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994Science 264 553

    [2]

    Yao Y, Hoffman A J, Gmachl C F 2012Nat. Photonics 6 432

    [3]

    Hvozdara L, Pennington N, Kraft M, Karlowatz M, Mizaikoff B 2002Vib. Spectrosc. 30 53

    [4]

    Bartalini S, Borri S, Cancio P, Castrillo A, Galli I, Giusfredi G, Mazzotti D, Gianfrani L, De Natale P 2010Phys. Rev. Lett. 104 083904

    [5]

    Bartalini S, Borri S, Galli I, Giusfredi G, Mazzotti D, Edamura T, Akikusa N, Yamanishi M, De Natale P 2011Opt. Express 19 17996

    [6]

    Genov G, Lellinger T E, Halfmann T, Peters T 2017J. Opt. Soc. Am. B 34 2018

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983Appl. Phys. B 31 97

    [8]

    Pound R V 1946Rev. Sci. Instum. 17 490

    [9]

    Black E D 2001Am. J. Phys. 69 79

    [10]

    Zhao G, Tian J, Hodges J T, Fleisher A J 2021Opt. Lett. 46 3057

    [11]

    Fasci E, Coluccelli N, Cassinerio M, Gambetta A, Hilico L, Gianfrani L, Laporta P, Castrillo A, Galzerano G 2014Opt. Lett. 39 4946

    [12]

    Maisons G, Carbajo P G, Carras M, Romanini D 2010Opt. Lett. 35 3607

    [13]

    Remillard J, Uy D, Weber W, Capasso F, Gmachl C, Hutchinson A, Sivco D, Baillargeon J, Cho A 2000Opt. Express 7 243

    [14]

    Yang J Q, Zhao G, Jiao K, Gao J, Yan X J, Zhao Y T, Ma W G, Jia S T 2024Acta Phys. Sin. 73 014205(in Chinese) [杨家齐,赵刚,焦康,高健,闫晓娟,赵延霆,马维光,贾锁堂2024物理学报73 014205]

    [15]

    Bordonalli A C, Walton C, Seeds A J 1999J. Light. Technol. 17 328

    [16]

    Satyan N, Liang W, Yariv A 2009IEEE J. Quantum Electron. 45 755

    [17]

    Steed R J, Pozzi F, Fice M J, Renaud C C, Rogers D C, Lealman I F, Moodie D G, Cannard P J, Lynch C, Johnston L, Robertson M J, Cronin R, Pavlovic L, Naglic L, Vidmar M, Seeds A J 2011Opt. Express 19 20048

    [18]

    Wang J, Chen D J, Cai H W, Feng J B, Guo J 2018Chin. J. Lasers 45 0401001(in Chinese) [王建,陈迪俊,蔡海文,冯俊波,郭进2018中国激光45 0401001]

    [19]

    Wang F, Ma W, Mei F, Ji Z, Su D, Zhao Y, Xiao L, Jia S 2023Appl. Opt. 62 7169

    [20]

    Qin J, Zhou Q, Xie W, Xu Y, Yu S, Liu Z, Tong Y T, Dong Y, Hu W 2015Opt. Lett. 40 4500

    [21]

    Satyan N, Vasilyev A, Liang W, Rakuljic G, Yariv A 2009Opt. Lett. 34 3256

    [22]

    Zhao B, Wang X, Wang C 2020ACS Photonics 7 1255

    [23]

    Lang R, Kobayashi K 1980IEEE J. Quantum Electron. 16 347

    [24]

    Wang X G, Zhao B B, Grillot F, Wang C 2020J. Appl. Phys. 127 073104

    [25]

    Domenico G D, Schilt S, Thomann P 2010Appl. Opt. 49 4801

    [26]

    Fox R W, Oates C W, Hollberg L W 2003Experimental Methods in the Physical Sciences (Vol. 40Cambridge Academic Press) p1

    [27]

    Kikuchi K 2012Opt. Express 20 5291

  • [1] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, doi: 10.7498/aps.73.20231049
    [2] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, doi: 10.7498/aps.70.20220186
    [3] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, doi: 10.7498/aps.71.20220186
    [4] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, doi: 10.7498/aps.69.20191832
    [5] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, doi: 10.7498/aps.68.20182140
    [6] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, doi: 10.7498/aps.68.20181882
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, doi: 10.7498/aps.68.20190217
    [8] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, doi: 10.7498/aps.67.20172696
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, doi: 10.7498/aps.66.094203
    [10] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, doi: 10.7498/aps.66.099501
    [11] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, doi: 10.7498/aps.65.070702
    [12] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, doi: 10.7498/aps.65.060701
    [13] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, doi: 10.7498/aps.64.243202
    [14] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, doi: 10.7498/aps.62.210701
    [15] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, doi: 10.7498/aps.61.098701
    [16] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, doi: 10.7498/aps.59.2364
    [17] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, doi: 10.7498/aps.59.2169
    [18] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, doi: 10.7498/aps.58.7083
    [19] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, doi: 10.7498/aps.56.500
    [20] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计. 物理学报, doi: 10.7498/aps.56.4137
计量
  • 文章访问数:  110
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-28

/

返回文章
返回