搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微空心阴极自脉冲放电微观动力学过程的研究

梁远毅 方振松 贺亚峰 李庆 何寿杰

引用本文:
Citation:

微空心阴极自脉冲放电微观动力学过程的研究

梁远毅, 方振松, 贺亚峰, 李庆, 何寿杰

Experiment and simulation on the spatiotemporal microscopic dynamics of self-pulsing discharge in micro-hollow cathode

Laing Yuan-yi, Fang Zhen-song, He Ya-feng, Li Qing, He Shou-jie
PDF
导出引用
  • 为了进一步揭示自脉冲放电机理,本文对氩气环境下的微空心阴极自脉冲放电进行了实验研究.结果表明,随着放电电流的升高,放电分为汤生放电、自脉冲放电和正常辉光放电三个阶段.一个完整的自脉冲放电周期可以分为电流的上升期、下降期以及放电的等待期.本文同时利用流体模型对自脉冲放电的时空动力学特性进行了模拟研究.模拟结果表明当自脉冲放电电流处于最小值时,放电被限制在阴极孔内,电场强度、电子密度和电子产生速率均较低,为汤生放电模式;随着放电电流的增高,孔内放电逐渐增强,同时放电由孔内逐渐向孔外延伸.当脉冲电流最高时,阴极孔外具有较强的放电,阴极外表面附近形成明显的阴极鞘层,阴极腔外部存在较高的电子产生速率.当放电电流降低时,放电由孔外向孔内收缩,并逐步恢复到汤生放电模式.模拟结果同时表明,不同自脉冲放电阶段电离源不同:电流较高时直接电离起主要作用,电流处于最低值时的脉冲等待期潘宁电离起主要作用.实验和模拟结果表明,微空心阴极自脉冲放电实质上是放电被限制在孔内的汤生放电模式与放电区域延伸到孔外的正常辉光放电模式相互转换的过程.
    To further explore the mechanism of self-pulsing discharge, a sandwich microcavity cathode is used to study this phenomenon in argon. The discharge undergoes Townsend discharge, self-pulsing discharge and normal glow discharge with the increasing discharge current. A complete self-pulsing discharge consists of the rising edge, the falling edge of the discharge current, and the waiting period of the discharge. Secondly, the spatiotemporal dynamic characteristic of self-pulsing discharge is simulated by using a fluid model. The simulated results indicate that when the self-pulsing discharge current is at its minimum, the discharge is confined inside the cathode cavity. The electric field, electron density and electron generate rate are low, resulting in a Townsend discharge mode. As the discharge current increases, the discharge inside the cavity strengthens, and the discharge gradually extends to the outside of cavity from inside the cavity. When the current is at its highest, a strong discharge exists outside the cavity, and an obvious cathode sheath is formed near the outer surface of the cathode, resulting in a high electron generate rate exists outside of the cavity. When the discharge current decreases, the discharge shrinks from the outside to the inside of the cavity, and finally returns to the Townsend discharge mode. The simulated results also indicate that the ionization source is different in different stages of self-pulsing discharge: direct ionization is dominant when the current is high, and Penning ionization plays a major role during the pulse waiting period when the current is at its lowest value. The experimental and simulation results indicate that the self-pulsing discharge in a micro-cavity cathode is essentially a process of mode transition between the Townsend discharge mode where the discharge is confined within the cavity and the normal glow discharge mode where the discharge region extends outside the hole.
  • [1]

    Wang Z, Zhao Z H, Fu Y Y 2024 Acta Phys. Sin. 7312501(in Chinese) [王震,赵志航,付洋洋2024物理学报73 125201]

    [2]

    Wei H C, Wang N, Duan Z C, He F 2018Phys. Plasmas 25 123513

    [3]

    Kuang Y, Zhang C, Hu X C, Ren C H, Chen G Y, Shao T 2023Transactions of China Electrotechnical Society. 38 3960(in Chinese) [邝勇,章程, 胡修翠, 任晨华,陈根永,邵涛2023电工技术学报383960]

    [4]

    Guo Y J, Ji Q Z, He F, Liao J S, Zhang Y, Ouyang J T 2019High Volt. Engineer. 45 820825(in Chinese) [郭昱均,季启政, 何锋, 廖劲松, 张宇, 欧阳吉庭2019高电压技术45 820825]

    [5]

    Saifutdinov A I, Sysoev S S 2023Plasma Sources Sci. Technol. 32 114001

    [6]

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022Acta Phys. Sin. 71025201(in Chinese) [赵立芬,哈静,王非凡,李庆,何寿杰2022物理学报71025201]

    [7]

    Schoenbach K H, Kurt B 2016Eur. Phys. J. D. 70 29

    [8]

    Ouyang J T, Zhang Y, Qin Y 2016High Volt. Engineer. 42673684(in Chinese) [欧阳吉庭,张宇,秦宇2016高电压技术42673684]

    [9]

    Truscott B S, Turner C, May P W 1997Plasma Sources Sci. Technol. 6 468477

    [10]

    Aubert X, Bauville G, Guillon J, Lacour B, Puech V, Rousseau A 2007Plasma Sources Sci. Technol. 16 2332

    [11]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014Phys. Plasmas 21 073501

    [12]

    Qin Y, Xie K, Zhang Y, Ouyang J T 2016Phys. Plasmas 23 023501

    [13]

    Hsu D D, Graves D B 2003 J. Phys. D: Appl. Phys. 36 28982907

    [14]

    Taylan O, Berberoglu 2014 J. Appl. Phys. 116 043302

    [15]

    Lazzaroni C, Charbrert P 2011Plasma Sources Sci. Technol. 20 20332038

    [16]

    Hagelaar G J M, Pitchford L C 2005Plasma Sources Sci. Technol. 14 722733

    [17]

    Ferreira C M, Loureiro L, Richard A 1985 J. Appl. Phys. 57 82

    [18]

    Karoulina E V, Lebedev Y A 1992J. Phys. D: Appl. Phys. 25 401

    [19]

    Biondi M A 1963Phys. Rev. 129 1181

    [20]

    Shon Jong W, Kushner M J 1994 J. Appl. Phys. 75 1883

    [21]

    He S J, Wang P, Ha J, Zhang B M, Zhang Z, Li Q 2018 Plasma Sci. Technol. 20054006

    [22]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017Phys. Plasmas 24 103514

    [23]

    Cui R L, He F, Miao J S, Ouyang J T 2017Phys. Plasmas 24 103524

    [24]

    Chen S, Li K L, Nijdam S 2019Plasma Sources Sci. Technol. 28 055017

    [25]

    Gao J M. 2022Master Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [高嘉懋2022硕士学位论文(武汉:华中科技大学)]

    [26]

    Levko D, Raja L 2021J. Phys.D 54 235201

    [27]

    Arslanbekov R R, Kolobov V I 2003J. Phys.D 36 2986

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, doi: 10.7498/aps.74.20241550
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究. 物理学报, doi: 10.7498/aps.73.20230712
    [3] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [4] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, doi: 10.7498/aps.71.20212194
    [5] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, doi: 10.7498/aps.70.20212194
    [6] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [7] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.71.20221361
    [8] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [9] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, doi: 10.7498/aps.69.20200087
    [10] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, doi: 10.7498/aps.68.20190734
    [11] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [12] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, doi: 10.7498/aps.66.025203
    [13] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, doi: 10.7498/aps.66.055101
    [14] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, doi: 10.7498/aps.62.124703
    [15] 张连珠, 孟秀兰, 张素, 高书侠, 赵国明. N2微空心阴极放电特性及其阴极溅射的PIC/MC模拟. 物理学报, doi: 10.7498/aps.62.075201
    [16] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [17] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, doi: 10.7498/aps.61.045205
    [18] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, doi: 10.7498/aps.60.015201
    [19] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回