搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水电导率对水下微秒脉冲流光放电形态的影响

李霄 温小琼 杨元天

引用本文:
Citation:

水电导率对水下微秒脉冲流光放电形态的影响

李霄, 温小琼, 杨元天
cstr: 32037.14.aps.74.20241637

Effect of water conductivity on underwater microsecond pulsed streamer discharge type

LI Xiao, WEN Xiaoqiong, YANG Yuantian
cstr: 32037.14.aps.74.20241637
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 水下流光放电在降解水中有机污染物、改良农作物种子等方面有良好的应用前景, 其放电形态对实际应用效果有重要影响. 本文利用四分幅超高速相机观测了不同水电导率、外加电压条件下水下微秒脉冲流光放电过程, 发现在高水电导率条件下存在两种不同的放电形态: 扇形丝丛和单根长丝. 在本文研究范围内水电导率800 µS/cm是两种形态出现率的分界点: 水电导率小于800 µS/cm时, 单根长丝形态的出现率为100%; 水电导率大于800 µS/cm时, 随着水电导率的增大, 单根长丝形态的出现率降低, 扇形丝丛形态的出现率增大; 水电导率大于1000 µS/cm后, 主导放电形态为扇形丝丛形态, 随水电导率的增大反转两种放电形态的出现率所需的电压增大. 扇形丝丛流光传播速度~1.7 km/s, 单根长丝流光早期传播速度~25 km/s, 后期传播速度下降至~0.8 km/s, 水电导率和外加电压对两种形态的传播速度没有显著影响. 扇形丝丛形态的放电延迟时间总是比单根长丝形态的大~8%, 单脉冲注入能量比单根长丝形态的小~20%.
    Underwater streamer discharges have various potential applications in the fields of wastewater treatment, crop seed processing, etc. The underwater streamer discharge types have an important effect on the practical applications. In this work, the underwater microsecond pulsed streamer discharges are investigated by using an ultra-high-speed frame camera system at different water conductivities and applied voltages. It is found that there exist two different types of discharge under the same experimental conditions: the fan-shaped bush type and the long-single filament type. The water conductivity of 800 µS/cm marks the boundary point for the occurrence rates of the two discharge types: when the water conductivity is less than 800 µS/cm, the occurrence rate of the long-single filament type is 100%; when the water conductivity is larger than 800 µS/cm, the occurrence rate of the long-single filament type decreases, but the occurrence rate of the fan-shaped bush type increases with water conductivity increasing. When the water conductivity is larger than 1000 µS/cm, the dominant discharge type is the fan-shaped bush type, and the voltage required to reverse the appearance rates of the two discharge types increases as the water conductivity increases. The fan-shaped bush type streamer has a propagation velocity of ~1.7 km/s, and the long-single filament streamer has a propagation velocity of ~25 km/s in the early stage and a propagation velocity of ~0.8 km/s in the later stage. Neither of water conductivity and applied voltage has significant influence on the propagation velocities of the two types of streamers. The time lag of the fan-shaped bush-type discharge is about 8% larger than that of the long-single filament-type discharge. The injection energy per pulse of the fan-shaped bush-type discharge is about 20% smaller than that of the single filament-type discharge.
      通信作者: 温小琼, wenxq@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11635004, 12375248)资助的课题.
      Corresponding author: WEN Xiaoqiong, wenxq@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11635004, 12375248).
    [1]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [2]

    Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007Google Scholar

    [3]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [4]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106Google Scholar

    [5]

    Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012Google Scholar

    [6]

    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646Google Scholar

    [7]

    Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933Google Scholar

    [8]

    Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209Google Scholar

    [9]

    Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908Google Scholar

    [10]

    Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416Google Scholar

    [11]

    Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39Google Scholar

    [12]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [13]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [14]

    Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28–July 2, 2009 p866

    [15]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304Google Scholar

    [16]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [17]

    Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514Google Scholar

    [18]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [19]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [20]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [21]

    Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498Google Scholar

    [22]

    Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438Google Scholar

    [23]

    Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069Google Scholar

    [24]

    Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013Google Scholar

    [25]

    Liu S, Kang Y 2024 Environ. Pollut. 348 123891Google Scholar

    [26]

    Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476Google Scholar

    [27]

    牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911Google Scholar

    Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911Google Scholar

    [28]

    Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189Google Scholar

    [29]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [30]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [31]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26–July 1, 2005 p91

    [32]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [33]

    Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013Google Scholar

    [34]

    王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 物理学报 71 015203Google Scholar

    Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203Google Scholar

    [35]

    Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302Google Scholar

    [36]

    杨双越, 温小琼, 杨元天, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

  • 图 1  实验装置图

    Fig. 1.  Experimental setup.

    图 2  水电导率1200 µS/cm、电压38 kV条件下单一放电脉冲过程中依次获得的8幅时间演化Hα发光图像, 放电脉冲I和放电脉冲II的相机设定完全相同. (a1)—(d1), (a2)—(d2)为放电早期阶段, 相邻两幅图像的时间间隔为80 ns; (e1)—(h1), (e2)—(h2)为放电后期阶段, 相邻两幅图像的时间间隔为200 ns, 所有图像的相机曝光时间为20 ns

    Fig. 2.  Eight successive Hα emission images acquired during a single pulse discharge at water conductivity of 1200 µS/cm and applied voltage of 38 kV, the camera settings for Pulse I and Pulse II are identical: (a1)–(d1), (a2)–(d2) Correspond to the early stage of the streamer discharge, and the time interval between two adjacent images is 80 ns; (e1)–(h1), (e2)–(h2) correspond to the later stage of the streamer discharge, and the time interval is 200 ns, the gating time of each image is 20 ns.

    图 3  水电导率1000 µS/cm、电压38 kV条件下的单一放电脉冲过程中依次获得的8幅时间演化阴影图像, 放电脉冲I和放电脉冲II的相机设定完全相同 图中相邻两幅图像之间的时间间隔为180 ns, 每幅图像的曝光时间为20 ns

    Fig. 3.  Eight successive shadow images obtained during a single pulse discharge at water conductivity of 1000 µS/cm and applied voltage of 38 kV, the camera time settings for Pulse I and Pulse II are identical: The time interval between two neighboring images in images is 180 ns, and the exposure time for each image is 20 ns.

    图 4  水电导率对两种放电形态出现率的影响

    Fig. 4.  Influence of the water conductivity on the appearance rate of the two discharge types.

    图 5  外加电压对两种放电形态出现率的影响

    Fig. 5.  Influence of the applied voltage on the appearance rate of the two discharge types.

    图 6  扇形丝丛形态流光的传播速度与水电导率、外加电压的关系

    Fig. 6.  The dependence of the propagation velocity of fan-shaped bush type streamer on the water conductivity and the applied voltage.

    图 7  一个放电脉冲下单根长丝形态流光丝长度随时间的变化

    Fig. 7.  Time dependence of the length of long-single filament type streamer during a single discharge pulse.

    图 8  单根长丝形态流光的传播速度 (a)早期传播速度; (b)后期传播速度

    Fig. 8.  Propagation velocity of the long-single filament type streamer: (a) Early stage; (b) later stage.

    图 9  水电导率1200 µS/cm、外加电压30 kV时放电电压、电流波形示例 (a) 扇形丝丛形态放电; (b) 单根长丝形态放电

    Fig. 9.  Waveforms of the discharge voltage and current at 1200 µS/cm and 30 kV: (a) Fan-shaped bush type discharge; (b) long-single filament type discharge.

    图 10  两种放电形态的放电延迟时间与水电导率的关系

    Fig. 10.  The effect of water conductivity on the time lag of the two discharge types.

    图 11  水电导率和外加电压对两种放电形态的单脉冲注入能量的影响

    Fig. 11.  Effect of water conductivity and applied voltage on single pulse injection energy of the two discharge types.

    图 12  流光阴影图像 (a)第一模式放电(220 µS/cm, 19 kV); (b) 本研究观测到的扇形丝丛形态(1000 µS/cm, 38 kV)

    Fig. 12.  Shadow images of streamer: (a) The primary streamer (220 µS/cm, 19 kV); (b) the fan-shaped bush type streamer (1000 µS/cm, 38 kV).

  • [1]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [2]

    Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007Google Scholar

    [3]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [4]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106Google Scholar

    [5]

    Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012Google Scholar

    [6]

    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646Google Scholar

    [7]

    Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933Google Scholar

    [8]

    Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209Google Scholar

    [9]

    Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908Google Scholar

    [10]

    Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416Google Scholar

    [11]

    Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39Google Scholar

    [12]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [13]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [14]

    Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28–July 2, 2009 p866

    [15]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304Google Scholar

    [16]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [17]

    Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514Google Scholar

    [18]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [19]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [20]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [21]

    Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498Google Scholar

    [22]

    Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438Google Scholar

    [23]

    Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069Google Scholar

    [24]

    Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013Google Scholar

    [25]

    Liu S, Kang Y 2024 Environ. Pollut. 348 123891Google Scholar

    [26]

    Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476Google Scholar

    [27]

    牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911Google Scholar

    Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911Google Scholar

    [28]

    Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189Google Scholar

    [29]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [30]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [31]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26–July 1, 2005 p91

    [32]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [33]

    Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013Google Scholar

    [34]

    王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 物理学报 71 015203Google Scholar

    Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203Google Scholar

    [35]

    Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302Google Scholar

    [36]

    杨双越, 温小琼, 杨元天, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

  • [1] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性. 物理学报, 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [2] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [3] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [4] 王雪, 温小琼, 王丽茹, 杨元天, 薛晓东. 水中流光放电流光丝的再发光和暂停行为. 物理学报, 2022, 71(1): 015203. doi: 10.7498/aps.71.20211162
    [5] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [6] 牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛. 气流对微秒脉冲滑动放电特性的影响. 物理学报, 2015, 64(19): 195204. doi: 10.7498/aps.64.195204
    [7] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究. 物理学报, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [8] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [9] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [10] 罗 涛, 朱 伟, 石勤伟, 王晓平. 准粒子谱函数对单层石墨片最小电导率的影响. 物理学报, 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [11] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [12] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [13] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [14] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [15] 郭洪霞, 麦振洪. 电导率对电流变效应的影响. 物理学报, 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [16] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响. 物理学报, 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
    [17] 蒋祺, 龚昌德. 无序层状系统电导率的自洽研究. 物理学报, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [18] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [19] 陈立泉, 柳俊, 王超英, 何元康, 陈竹生, 刘永平. 影响聚合物离子导体电导率的一些因素. 物理学报, 1987, 36(1): 60-66. doi: 10.7498/aps.36.60
    [20] 张昭庆. 液态金属及非晶态中的电导率——相干势近似. 物理学报, 1982, 31(3): 294-310. doi: 10.7498/aps.31.294
计量
  • 文章访问数:  517
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2024-12-25
  • 上网日期:  2025-01-08
  • 刊出日期:  2025-03-05

/

返回文章
返回