-
水下流光放电在降解水中有机污染物、改良农作物种子等方面有良好的应用前景,其放电形态对实际应用效果有重要影响。本文利用四分幅超高速相机观测了不同水电导率、外加电压条件下水下微秒脉冲流光放电过程,发现在高水电导率条件下存在两种不同的放电形态:扇形丝丛和单根长丝。在本文研究范围内水电导率800µS/cm是两种形态出现率的分界点:水电导率小于800µS/cm时,单根长丝形态的出现率为100%;当水电导率大于800µS/cm时,随着水电导率的增加,单根长丝形态的出现率降低,扇形丝丛形态的出现率增加;水电导率大于1000µS/cm后,主导放电形态为扇形丝丛形态,随水电导率的增大反转两种放电形态的出现率所需的电压增大。扇形丝丛流光传播速度~1.7 km/s,单根长丝流光早期传播速度~25 km/s,后期传播速度下降至~0.8 km/s,水电导率和外加电压对两种形态的传播速度没有显著影响。扇形丝丛形态的放电延迟时间总是比单根长丝形态的大~8%,单脉冲注入能量比单根长丝形态的小~20%。
-
关键词:
- 水下微秒脉冲流光放电 /
- 水电导率 /
- 扇形丝丛形态 /
- 单根长丝形态
Underwater streamer discharges have various potential application on wastewater treatment and crop seed processing, etc. The discharge types of an underwater streamer discharge have an important effect on the practical applications. In this paper, the underwater microsecond pulsed streamer discharges were investigated by using an ultra-high-speed frame camera system at different water conductivity and applied voltage. It was found that two different types of discharge exist at the same experimental conditions: the fan-shaped bush type and the long-single filament type. The water conductivity of 800 µS/cm marks the boundary point for the appearance rates of the two discharge types: when the water conductivity is less than 800 µS/cm, the appearance rate of the long-single filament type is 100%; while the water conductivity is larger than 800 µS/cm, the appearance rate of the long-single filament type decreases, but the appearance rate of the fan-shaped bush type increases with the increase of the water conductivity. When the water conductivity is larger than 1000 µS/cm, the dominant discharge type is the fan-shaped bush type, and the voltage required to reverse the appearance rates of the two discharge types increases as the water conductivity increases. The fan-shaped bush type streamer has a propagation velocity of ~1.7 km/s, and the long-single filament streamer has a propagation velocity of ~25 km/s in the early stage and a propagation velocity of ~0.8 km/s in the later stage. The water conductivity and applied voltage have no significant influence on the propagation velocity of the two types of streamers. The time lag of the fan-shaped bush type discharge is about 8% larger than that of the long-single filament type discharge. The injection energy per pulse of the fan-shaped bush type discharge is about 20% smaller than that of the single filament type discharge.-
Keywords:
- Underwater microsecond pulsed streamer discharge /
- water conductivity /
- fan-shaped bush type discharge /
- long-single filament type discharge
-
[1] Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006Ind. Eng. Chem. Res. 45 882
[2] Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008J. Phys. D: Appl. Phys. 41 234007
[3] Bruggeman P, Leys C 2009J. Phys. D: Appl. Phys. 42 053001
[4] Sato M, Ohgiyama T, Clements J S 1996IEEE. Trans. Ind. Appl. 32 106
[5] Lukes P, Clupek M, Babicky V, Sunka P 2008Plasma Sources Sci. Technol. 17 024012
[6] Akiyama H 2000IEEE Trans. Dielectr. Electr. Insul. 7 646
[7] Titova Y V, Stokozenko V G, Maximov A I 2010IEEE Trans. Plasma Sci. 38 933
[8] Sharma A K, Locke B R, Arce P, Finney W C 1993Hazard. Waste Hazard. Mater. 10 209
[9] Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908
[10] Wang H J, Li J, Quan X 2006J. Electrostat. 64 416
[11] Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010IEEE Trans. Plasma Sci. 38 39
[12] Sivachandiran L, Khacef A 2017RSC Adv. 7 1822
[13] An W, Baumung K, Bluhm H 2007J. Appl. Phys. 101 053302
[14] Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009IEEE Pulsed Power Conference Washington. D C, USA, June 28-July 2,2009 p866
[15] Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013J. Appl. Phys. 113 113304
[16] Lesaint O 2016J. Phys. D: Appl. Phys. 49 144001
[17] Li J S, Wen X Q, Liu X H, Zhou Y B 2019IEEE Trans. Plasma Sci. 47 1514
[18] Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014J. Appl. Phys. 116 213301
[19] Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006Jpn. J. Appl. Phys. 45 239
[20] Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019J. Appl. Phys. 125 133302
[21] Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002IEEE Trans. Dielectr. Electr. Insul. 9 498
[22] Wen X Q, Liu G S, Ding Z F 2012IEEE Trans. Plasma Sci. 40 438
[23] Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024Journal of Hazardous Materials 476 135069
[24] Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018Plasma Sources Sci. Technol. 27 055013
[25] Liu S, Kang Y 2024Environmental Pollution 348 123891
[26] Jose J, Philip L 2019Journal of Environmental Chemical Engineering 7 103476
[27] Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015Spectroscopy and Spectral Analysis 35 2911(in Chinese) [牛志文,晏现峰,李书翰,温小琼,刘金远2015光谱学与光谱分析35 2911]
[28] Sun B, Sato M, Clements J S 1997Journal of Electrostatics 39 189
[29] Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012Plasma Sources Sci. Technol. 21 055031
[30] Marinov I, Starikovskaia S, Rousseau A 2014J. Phys. D: Appl. Phys. 47 224017
[31] Salazar J N,Bonifaci N,Denat A,Lesaint O 2005IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26-July 1, 2005 p91
[32] Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010J. Phys. D: Appl. Phys. 43 175202
[33] Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013J. Phys. D: Appl. Phys. 46 464013
[34] Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022Acta Phys. Sin. 71 174(in Chinese) [王雪,温小琼,王丽茹,杨元天,薛晓东2022物理学报71 174]
[35] Wang L R, Wen X Q, Yang Y T, Wang X 2023J. Appl. Phys. 134 013302
[36] Yang S Y, Wen X Q, Yang Y T, Li X 2024Acta Phys. Sin. 73 271(in Chinese) [杨双越,温小琼,杨元天,李霄2024物理学报73 271]
计量
- 文章访问数: 31
- PDF下载量: 0
- 被引次数: 0