搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大密度比气泡在多孔介质通道内上升行为的三维介观数值模拟

赵兹卿 严裕 娄钦

引用本文:
Citation:

大密度比气泡在多孔介质通道内上升行为的三维介观数值模拟

赵兹卿, 严裕, 娄钦
cstr: 32037.14.aps.74.20241678

Three-dimensional mesoscopic numerical simulation of the rising behavior of bubbles with large density ratio in porous media channels

ZHAO Ziqing, YAN Yu, LOU Qin
cstr: 32037.14.aps.74.20241678
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于格子Boltzmann方法, 使用三维数值模拟研究了复杂多孔介质中大密度比气泡运动行为, 重点探讨Eötvös数 (Eo)、接触角 (θ) 和Reynolds数(Re)耦合作用对气泡速度、形态演化及停滞现象的影响规律. 研究发现, 在多孔介质中, 接触角增大降低了气泡速度, 并加剧速度波动, 使气泡趋于扁平化. Eo的增大则可显著抑制扁平化趋势, 稳定气泡速度, 使其形态更接近子弹头状. 当接触角较大且Eo较小时, 黏附力增强会导致气泡停滞于多孔介质内部. 此外, Re与接触角在阻力构成中呈竞争关系, 对气泡的平均速度具有相互增强的作用, 而在较大接触角下, Re增大会导致气泡尾部不稳定并易断裂. 研究还表明, 低Eo和低Re条件下气泡速度随Eo增大而下降, 而在高Eo和高Re条件下则呈相反趋势, 这一现象源于气泡形态的不稳定性对浮力和速度的影响.
    In this paper, a three-dimensional numerical simulation of the motion behavior of bubbles in complex porous medium channels in a large density ratio gas-liquid system is conducted based on the lattice Boltzmann method. The Eötvös number (Eo), contact angle (θ) and Reynolds number (Re) are systematically discussed with emphasis on the law of their coupling effect affecting bubble velocity, morphological evolution and stagnation phenomenon. The results show that the increase of contact angle will reduce the bubble velocity but intensify the velocity fluctuations, making the bubbles tend flat, while the increase of Eo number significantly suppresses the influence of the contact angle, stabilizes the bubble velocity, and makes its shape close to a bullet head shape. When the contact angle is large (θ > 90°) and the Eo number is small (Eo < 10), the adhesion force is significantly enhanced and the bubbles will stagnate inside the porous medium. Re number and contact angle compete in the generation of resistance, and have mutually reinforcing effects on the average velocity of bubbles and interface evolution. The larger contact angle makes the deformation of the bubble tail intensify and becomes unstable, and as the Re number further increases, the tail tentacles are more likely to break, forming residual bubbles. It is also found in this work that the coupling between Eo number and Re number significantly affects bubble behavior in motion and morphological evolution. Under the conditions of high Eo number (Eo ≥ 25) and high Re number (Re ≥14), the bubble velocity increases with the Eo number rising, and the trend becomes more significant as the Re number increases; while under the conditions of low Eo number (Eo < 25) and low Re number (Re < 14), the speed change pattern is completely opposite. This phenomenon is due to the high instability of bubble morphology under the conditions of high Eo number and high Re number, which affects the buoyancy and speed performance. The research results provide important guidance for optimizing the flow behavior of bubbles in porous medium.
      通信作者: 娄钦, qlou@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52376068, 51976128)和上海市浦江人才(批准号: 22PJD047)资助的课题.
      Corresponding author: LOU Qin, qlou@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52376068, 51976128) and the Pujiang Program of Shanghai, China (Grant No. 22PJD047).
    [1]

    Lichtschlag A, Haeckel M, Olierook D, Peel K, Flohr A, Pearce C R, Marieni C, James R H, Connelly D P 2021 Int. J. Greenh. Gas Control 109 103352Google Scholar

    [2]

    张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和 2023 物理学报 72 164701Google Scholar

    Zhang M A, Wang J Q, Wu R, Feng Z, Zhan M X, Xu X, Chi Z H 2023 Acta Phys. Sin. 72 164701Google Scholar

    [3]

    Ajayi T, Gomes J S, Bera A 2019 Petrol. Sci. 16 1028Google Scholar

    [4]

    Liu H B, Xu H, Pan L M, Zhong D H, Liu Y 2019 Int. J. Hydrogen Energy 44 22780Google Scholar

    [5]

    王季康, 李华, 彭宇飞, 李晓燕, 张新宇 2022 物理学报 71 158802Google Scholar

    Wang J K, Li H, Peng Y F, Li X Y, Zhang X Y 2022 Acta Phys. Sin. 71 158802Google Scholar

    [6]

    Zhang D, Li Y, Yuan H 2023 Desalination 566 116902Google Scholar

    [7]

    Haris S, Qiu X, Klammler H, Mohamed M M A 2020 Groundw. Sustain. Dev. 11 100463Google Scholar

    [8]

    Li Y F, Yang G Q, Yu S L, Mo J K, Li K, Xie Z Q, Ding L, Wang W T, Zhang F Y 2021 Electrochim. Acta 370 137751Google Scholar

    [9]

    Wang C Y, Beckermann C, Fan C 1994 Numer. Heat Transf. Part A: Appl. 26 375Google Scholar

    [10]

    Wang H, Lou Q, Liu G, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [11]

    张森, 娄钦 2024 物理学报 73 026401Google Scholar

    Zhang S, Lou Q 2024 Acta Phys. Sin. 73 026401Google Scholar

    [12]

    Roosevelt S E, Corapcioglu M Y 1998 Water Resour. Res. 34 1131Google Scholar

    [13]

    Corapcioglu M Y, Cihan A, Drazenovic M 2004 Water Resour. Res. 40 4

    [14]

    Ma Y, Kong X Z, Scheuermann A, Galindo-Torres S A, Bringemeier D, Li L 2015 Water Resour. Res. 51 4359Google Scholar

    [15]

    Ghasemian S, Ahmadzadegan A, Chatzis I 2019 Transp. Porous Media 129 811Google Scholar

    [16]

    Liu N, Ju B, Yang Y, Brantson E T, Wang J, Tian Y 2019 J. Petrol. Sci. Eng. 180 396Google Scholar

    [17]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [18]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(北京: 科学出版社) 第42页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p42

    [19]

    Shi J, Ma Q, Chen Z 2019 Microgravity Sci. Technol. 31 207Google Scholar

    [20]

    Sattari E, Zanous S P, Farhadi M, Mohamad A 2020 J. Power Sources 454 227929Google Scholar

    [21]

    Inamuro T, Ogata T, Ogino F 2004 Future Gener. Comput. Syst. 20 959Google Scholar

    [22]

    Yu K, Yong Y M, Yang C 2020 Processes 8 1608Google Scholar

    [23]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [24]

    Alizadeh M, Seyyedi S M, Rahni M T, Ganji D D 2017 J. Mol. Liq. 236 151Google Scholar

    [25]

    Chen G Q, Huang X, Zhang A M, Wang S P, Li T 2019 Phys. Fluids 31 097104Google Scholar

    [26]

    Zhang A, Guo Z P, Wang Q G, Xiong S M 2019 Phys. Fluids 31 063106Google Scholar

    [27]

    Zhang A, Su D B, Li C M, Zhang Y, Jiang B, Pan F S 2022 Phys. Fluids 34 043312Google Scholar

    [28]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [29]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [30]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941Google Scholar

    [31]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [32]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [33]

    He X, Luo L S 1997 Phys. Rev. E 55 6333Google Scholar

    [34]

    He X, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [35]

    Liang H, Xu J R, Chen J X, Wang H L, Chai Z H, Shi B C 2018 Phys. Rev. E 97 033309Google Scholar

    [36]

    Chiu P H, Lin Y T 2011 J. Comput. Phys. 230 185Google Scholar

    [37]

    Unverdi S O, Tryggvason G 1992 J. Comput. Phys. 100 25Google Scholar

    [38]

    Wei Y K, Li Y M, Wang Z D, Yang H, Zhu Z C, Qian Y H, Luo K H 2022 Phys. Rev. E 105 015103Google Scholar

    [39]

    Jeon D H, Kim S, Kim M, Lee C, Cho H S 2023 J. Power Sources 553 232322Google Scholar

    [40]

    Yi T H, Zhang W Y, Qiu Y N, Lei G, Yu Y Z, Wu J Y, Yang G 2023 Int. J. Multiphase Flow 169 104601Google Scholar

    [41]

    娄钦, 汤升, 王浩原 2021 计算物理 38 289

    Lou Q, Tang S, Wang H Y 2021 J. Comput. Phys. 38 289

  • 图 1  三维物理模型 (a) 示意图; (b) y方向正视图

    Fig. 1.  3D physical model (a) Schematic diagram; (b) front view in the y direction.

    图 2  不同网格下气泡在y = Ly/2和z = h3切面上轮廓变化 (a) t* = 2.19时刻气泡在y = Ly/2切面的轮廓; (b) t* = 3.69时刻气泡在z = h3切面的轮廓

    Fig. 2.  The contour changes of the bubble on the y = Ly/2 and z = h3 sections under different grids: (a) The contour of the bubble on the y = Ly/2 section at t* = 2.19; (b) the contour of the bubble on the z = h3 section at t* = 3.57.

    图 3  不同Eo与接触角组合下的气泡形态变化

    Fig. 3.  Changes in bubble morphology under different combinations of Eo numbers and contact angles.

    图 4  不同工况下未通过多孔介质的气泡形态

    Fig. 4.  The morphology of bubbles that do not pass through porous media under different working conditions.

    图 5  气泡平均速度${v_{{\text{ave}}}}$在(a)不同Eo与(b)接触角θ工况下的变化趋势

    Fig. 5.  Variation trend of average bubble velocity under (a) different Eo numbers and (b) contact angle θ conditions.

    图 6  瞬时速度v* 在不同Eo下随θ的变化 (a) Eo = 10; (b) Eo = 100

    Fig. 6.  Variation of instantaneous velocity v* with θ at different Eo numbers: (a) Eo = 10; (b) Eo = 100.

    图 7  气泡在 (a)绿色圆点、(b) 蓝色方块、(c) 红色三角处的位置与形态

    Fig. 7.  The position and shape of bubbles at (a) green dots, (b) blue squares, and (c) red triangles.

    图 8  气泡在(a)不同Re与(b)不同θ工况下vave的变化趋势

    Fig. 8.  Variation trend of bubble vave under (a) different Re and (b) different θ conditions.

    图 9  不同Re与接触角耦合作用下气泡的形态变化

    Fig. 9.  Changes in bubble morphology under the coupling effect of different Re and contact angle.

    图 10  气泡在(a)不同Eo和(b)不同Re组合下vave的变化情况

    Fig. 10.  Changes in the bubble vave under (a) different Eo numbers and (b) different Re number combinations.

    图 11  不同ReEo耦合作用下气泡的形态变化

    Fig. 11.  Changes in bubble morphology under the coupling of different Re and Eo numbers.

  • [1]

    Lichtschlag A, Haeckel M, Olierook D, Peel K, Flohr A, Pearce C R, Marieni C, James R H, Connelly D P 2021 Int. J. Greenh. Gas Control 109 103352Google Scholar

    [2]

    张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和 2023 物理学报 72 164701Google Scholar

    Zhang M A, Wang J Q, Wu R, Feng Z, Zhan M X, Xu X, Chi Z H 2023 Acta Phys. Sin. 72 164701Google Scholar

    [3]

    Ajayi T, Gomes J S, Bera A 2019 Petrol. Sci. 16 1028Google Scholar

    [4]

    Liu H B, Xu H, Pan L M, Zhong D H, Liu Y 2019 Int. J. Hydrogen Energy 44 22780Google Scholar

    [5]

    王季康, 李华, 彭宇飞, 李晓燕, 张新宇 2022 物理学报 71 158802Google Scholar

    Wang J K, Li H, Peng Y F, Li X Y, Zhang X Y 2022 Acta Phys. Sin. 71 158802Google Scholar

    [6]

    Zhang D, Li Y, Yuan H 2023 Desalination 566 116902Google Scholar

    [7]

    Haris S, Qiu X, Klammler H, Mohamed M M A 2020 Groundw. Sustain. Dev. 11 100463Google Scholar

    [8]

    Li Y F, Yang G Q, Yu S L, Mo J K, Li K, Xie Z Q, Ding L, Wang W T, Zhang F Y 2021 Electrochim. Acta 370 137751Google Scholar

    [9]

    Wang C Y, Beckermann C, Fan C 1994 Numer. Heat Transf. Part A: Appl. 26 375Google Scholar

    [10]

    Wang H, Lou Q, Liu G, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [11]

    张森, 娄钦 2024 物理学报 73 026401Google Scholar

    Zhang S, Lou Q 2024 Acta Phys. Sin. 73 026401Google Scholar

    [12]

    Roosevelt S E, Corapcioglu M Y 1998 Water Resour. Res. 34 1131Google Scholar

    [13]

    Corapcioglu M Y, Cihan A, Drazenovic M 2004 Water Resour. Res. 40 4

    [14]

    Ma Y, Kong X Z, Scheuermann A, Galindo-Torres S A, Bringemeier D, Li L 2015 Water Resour. Res. 51 4359Google Scholar

    [15]

    Ghasemian S, Ahmadzadegan A, Chatzis I 2019 Transp. Porous Media 129 811Google Scholar

    [16]

    Liu N, Ju B, Yang Y, Brantson E T, Wang J, Tian Y 2019 J. Petrol. Sci. Eng. 180 396Google Scholar

    [17]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [18]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用(北京: 科学出版社) 第42页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p42

    [19]

    Shi J, Ma Q, Chen Z 2019 Microgravity Sci. Technol. 31 207Google Scholar

    [20]

    Sattari E, Zanous S P, Farhadi M, Mohamad A 2020 J. Power Sources 454 227929Google Scholar

    [21]

    Inamuro T, Ogata T, Ogino F 2004 Future Gener. Comput. Syst. 20 959Google Scholar

    [22]

    Yu K, Yong Y M, Yang C 2020 Processes 8 1608Google Scholar

    [23]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [24]

    Alizadeh M, Seyyedi S M, Rahni M T, Ganji D D 2017 J. Mol. Liq. 236 151Google Scholar

    [25]

    Chen G Q, Huang X, Zhang A M, Wang S P, Li T 2019 Phys. Fluids 31 097104Google Scholar

    [26]

    Zhang A, Guo Z P, Wang Q G, Xiong S M 2019 Phys. Fluids 31 063106Google Scholar

    [27]

    Zhang A, Su D B, Li C M, Zhang Y, Jiang B, Pan F S 2022 Phys. Fluids 34 043312Google Scholar

    [28]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [29]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [30]

    Shan X, Chen H 1994 Phys. Rev. E 49 2941Google Scholar

    [31]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [32]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [33]

    He X, Luo L S 1997 Phys. Rev. E 55 6333Google Scholar

    [34]

    He X, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [35]

    Liang H, Xu J R, Chen J X, Wang H L, Chai Z H, Shi B C 2018 Phys. Rev. E 97 033309Google Scholar

    [36]

    Chiu P H, Lin Y T 2011 J. Comput. Phys. 230 185Google Scholar

    [37]

    Unverdi S O, Tryggvason G 1992 J. Comput. Phys. 100 25Google Scholar

    [38]

    Wei Y K, Li Y M, Wang Z D, Yang H, Zhu Z C, Qian Y H, Luo K H 2022 Phys. Rev. E 105 015103Google Scholar

    [39]

    Jeon D H, Kim S, Kim M, Lee C, Cho H S 2023 J. Power Sources 553 232322Google Scholar

    [40]

    Yi T H, Zhang W Y, Qiu Y N, Lei G, Yu Y Z, Wu J Y, Yang G 2023 Int. J. Multiphase Flow 169 104601Google Scholar

    [41]

    娄钦, 汤升, 王浩原 2021 计算物理 38 289

    Lou Q, Tang S, Wang H Y 2021 J. Comput. Phys. 38 289

  • [1] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [2] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析. 物理学报, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [5] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [6] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [7] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [8] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [9] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [13] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [14] 项蓉, 严微微, 苏中地, 吴杰, 张凯, 包福兵. 生物过滤器中非均匀性流动的数值研究. 物理学报, 2014, 63(16): 164702. doi: 10.7498/aps.63.164702
    [15] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [17] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  518
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-04
  • 修回日期:  2024-12-30
  • 上网日期:  2025-01-08
  • 刊出日期:  2025-03-05

/

返回文章
返回