搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B-样条基组方法在少电子原子结构精密计算中的应用

张永慧 史庭云 唐丽艳

引用本文:
Citation:

B-样条基组方法在少电子原子结构精密计算中的应用

张永慧, 史庭云, 唐丽艳

Applications of B-spline method in precise structure calculation of few-electron atoms

ZHANG Yonghui, SHI Tingyun, TANG Liyan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 少电子原子的精密光谱在基本物理理论验证、精细结构常数精确测定以及原子核性质深入探索等领域具有重要的应用价值. 随着精密测量物理学的快速发展, 人们对原子结构数据的需求已从最初的存在性确认, 转变为对高度准确性和精确性的持续追求. 为了满足精密光谱实验对高精度结构性质数据的迫切需求, 我们自主发展了一系列基于B-样条基组的高精度理论方法, 并将其成功应用于少电子原子的能级结构与外场响应性质的理论研究中. 具体而言, 我们实现了氦原子和类氦离子能谱的高精度确定, 为相关实验研究提供理论支撑; 实现了幻零波长的高精度理论预言, 为量子电动力学理论检验开辟了新方向; 提出了有效抑制光频移的理论方案, 为氦原子高精度光谱实验的开展提供了重要支持. 展望未来, 基于B-样条基组的高精度理论方法有望在量子态操控、核结构性质精确测定、超冷分子形成以及新物理探索等前沿领域得到广泛应用, 从而进一步促进国内外精密测量物理领域的蓬勃发展.
    The precise spectroscopy of few-electron atoms plays a pivotal role in advancing fundamental physics, encompassing the verification of quantum electrodynamics (QED) theory, the determination of fine-structure constants, and the exploration of nuclear properties. With the rapid development of precision measurement techniques, the demand for atomic structure data has evolved from mere confirmation of existence to the pursuit of unprecedented accuracy. To meet the growing needs for precision spectroscopy experiments, we have developed a series of high-precision theoretical methods based on B-spline basis sets, including the non-relativistic configuration interaction (B-NRCI) method, the correlated B-spline basis functions (C-BSBFs) method, and the relativistic configuration interaction (B-RCI) method. These methods leverage the unique properties of B-spline functions, such as locality, completeness, and numerical stability, to accurately solve the Schrödinger and Dirac equations for few-electron atoms. Our methods have yielded significant results, particularly for helium and helium-like ions. Using these methods, we have obtained accurate energies, polarizabilities, tune-out wavelengths, and magic wavelengths. Specifically, we have achieved high-precision determinations of the energy spectra of helium, providing vital theoretical support for related experimental research. Additionally, we have made high-precision theoretical predictions of tune-out wavelengths, paving the way for new tests of QED theory. Furthermore, we have proposed effective theoretical schemes to suppress Stark shifts, thereby facilitating high-precision spectroscopy experiments of helium. The B-spline-basis methods reviewed in this paper have proven exceptionally effective in high-precision calculations for few-electron atoms. These methods have not only provided crucial theoretical support for precision spectroscopy experiments but have also paved new avenues for testing QED. Their ability to handle large-scale configuration interactions and incorporate relativistic and QED corrections makes them versatile tools for advancing atomic physics research. In the future, the high-precision theoretical methods grounded in B-spline basis sets are poised to expand into frontier areas, including quantum state manipulation, nuclear structure property determination, ultracold molecule formation, and new physics exploration, thereby continuously driving the progress of precision measurement physics.
  • 图 1  基于B-样条函数的多种高精度理论方法框架图

    Fig. 1.  Framework diagram of various high-precision theoretical methods based on B-spline functions

    图 2  在$ [0, 1000] $区间内, 10个7阶均匀分布型的B-样条函数

    Fig. 2.  Ten 7 th-order uniformly distributed B-spline functions within the interval $ [0, 1000] $

    图 3  在$ [0, 1000] $区间内, 10个7阶指数分布型的B-样条函数

    Fig. 3.  Ten 7 th-order exponentially distributed B-spline functions within the interval $ [0, 1000] $

    图 4  幻零波长$ \lambda_t $和魔幻波长$ \lambda_m $的示意图

    Fig. 4.  Schematic diagram of tune-out wavelength $ \lambda_t $ and magic wavelength $ \lambda_m $

    图 5  氦原子亚稳态413 nm幻零波长的位置

    Fig. 5.  The position of the 413 nm tune-out wavelength for the metastable state of helium

    图 6  氦原子413 nm幻零波长的研究历程

    Fig. 6.  Research roadmap of the 413 nm tune-out wavelength for the metastable state of helium

    图 7  氦原子亚稳态413 nm幻零波长的各项修正计算[49]

    Fig. 7.  Contributions of various corrections to the 413 nm tune-out wavelength for the metastable state of helium [49]

    图 8  氦原子$ 2\, ^3 S_1\rightarrow 2\, ^1 S_0 $跃迁下的魔幻波长, 其中绿色圆圈所示的位置是319.8 nm的魔幻波长

    Fig. 8.  The magic wavelengths for the transition $ 2\, ^3 S_1\rightarrow 2\, ^1 S_0 $ of helium, where the position indicated by the green circle corresponds to the 319.8 nm magic wavelength.

    图 9  氦–4原子$ 2\, ^3 S_1\rightarrow 3\, ^3 S_1 $的双光子激发跃迁方案图

    Fig. 9.  The two-photon excitation scheme for the $ 2\, ^3 S_1\rightarrow 3\, ^3 S_1 $ transition of 4He.

    表 1  无穷核质量下, 氦原子基态非相对论能量(原子单位)随最大分波数$ \ell_{max}$增加的收敛性检验

    Table 1.  Convergence test for the non-relativistic energy (in a.u.) of ground-state helium with infinite nuclear mass, as the maximum partial wave $ \ell_{max}$ increases.

    $ \ell_{max} $B-NRCI Method [56]$ \ell_{max} $C-BSBFs Method [52]
    60–2.9037242407501–2.9037242683
    65–2.9037242625472–2.90372437687
    70–2.9037242784133–2.90372437696
    75–2.9037242901994–2.903724376999
    80–2.903724299061
    Ref. [13]–2.90372437703411960
    下载: 导出CSV

    表 2  加速度规范下, 氢原子基态贝特对数项$\beta(1 s)$(原子单位)随指数结点参数$\gamma_0$的变化. 其中, $t_1$为第一个非零结点, $E_{max}$为中间态的最大能量值. 在计算过程中, 样条个数$N=300$, 样条阶数$k=15$, 盒子半径$R_0=200$个原子单位

    Table 2.  Values of the Bethe logarithm $\beta(1 s)$ (in a.u.) for the ground-state hydrogen in the acceleration gauge, evaluated at different knot sequences. Where $\gamma_0$ denotes the parameter of exponential knot sequences, $t_1$ represents the first interior knot point, and $E_{max}$ indicates the highest energy. All calculations are carried out using the same set of parameters: N = 300, k = 15, and $R_0$=200 a.u.

    $ \gamma_0 $$ t_1 $$ E_{max} $$ \beta(1 s) $
    0.0054.10 × 10–15.76 × 1032.258
    0.0252.41 × 10–21.59 × 1062.2890
    0.0354.59 × 10–34.32 × 1072.29061
    0.0458.06 × 10–41.38 × 1092.290915
    0.0652.17 × 10–51.83 × 10132.2909796
    0.0753.43 × 10–77.23 × 10152.29098109
    0.0855.32 × 10–72.96 × 10182.290981330
    0.1051.23 × 10–95.38 × 10202.2909813741
    0.1151.84 × 10–102.36 × 10222.29098137505
    0.1252.74 × 10–101.05 × 10232.29098137518
    0.1354.04 × 10–114.75 × 10232.2909813752020
    0.1455.94 × 10–122.16 × 10252.29098137520502
    0.1651.26 × 10–134.65 × 10282.290981375205541
    0.1751.83 × 10–142.17 × 10302.2909813752055506
    0.1852.65 × 10–151.03 × 10322.29098137520555206
    0.1953.82 × 10–164.86 × 10332.29098137520555227
    0.2055.49 × 10–172.32 × 10352.290981375205552296
    0.2251.13 × 10–185.35 × 10382.29098137520555230124
    0.2351.60 × 10–196.31 × 10392.2909813752055523013355
    下载: 导出CSV

    表 3  不同方法计算得到的氦原子$n\, ^1 S(n= 1- $$ 7)$态贝特对数的比较. 第二列和第三列的第一项数据来自加速度规范, 而第二项数据来自速度-加速度混合规范. 括号中的数字表示计算结果的不确定度

    Table 3.  Comparison of Bethe logarithms for the $n\, ^1 S(n=1-7)$ states of helium obtained from different methods. The first entries in the second and third columns are from the acceleration gauge, while the second entries are from the mixed velocity-acceleration gauge. The Numbers in parentheses represent the computational uncertainties.

    StateB-NRCI [65]C-BSBFs [55]Integration method [73]
    $ 1\, ^1 S $4.37034(2)4.37016022(5)4.3701602230703(3)
    4.37014(2)4.3701601(1)
    $ 2\, ^1 S $4.36643(1)4.36641271(1)4.366412726417(1)
    4.366412(1)4.3664127(1)
    $ 3\, ^1 S $4.369170(1)4.36916480(6)4.369164860824(2)
    4.3691643(2)4.3691648(1)
    $ 4\, ^1 S $4.369893(1)4.36989065(5)4.369890632356(3)
    4.3698903(5)4.3698906(1)
    $ 5\, ^1 S $4.370152(3)4.3701520(1)4.370151796310(4)
    4.3701511(2)4.3701519(1)
    $ 6\, ^1 S $4.37027(1)4.370267(1)4.370266974319(5)
    4.370266(2)4.370267(1)
    $ 7\, ^1 S $4.37033(1)4.370326(1)4.370325261772(5)
    4.37033(1)4.370326(1)
    下载: 导出CSV

    表 4  氦–4原子基态静电偶极极化率(原子单位)的结果比较. “NR”表示非相对论极化率, “Rel.”表示相对论极化率, “Total”表示考虑QED修正后的最终极化率. 括号中的数字表示计算结果的不确定度

    Table 4.  Comparison of the static dipole polarizability $\alpha_1(0)$ (in a.u.) for the ground state of 4He. “NR” denotes the non-relativistic polarizability, “Rel.” represents the relativistic polarizability, and “Total” stands for the final polarizability including QED corrections. The Numbers in parentheses indicate the computational uncertainties.

    C-BSBFs [54] Ref. [78]
    NR 1.383809986408(2) 1.383809986408(1)
    Rel. 1.38372953306(7) 1.3837295330(1)
    Total 1.38376080(24) 1.38376077(14)
    下载: 导出CSV

    表 5  关联B-样条基组方法计算的氦–4原子$n\, ^1 S_0(n=2-7)$和$n\, ^3 S_1(n=2-7)$激发态的静电偶极极化率(原子单位). 对于$n\, ^3 S_1$态的张量极化率, 斜杠前的数值对应于$n\, ^3 P_{0, 1, 2}$中间态的贡献, 斜杠后的数值对应于$n\, ^3 D_1$中间态的贡献. 括号中的数字为计算结果的不确定度

    Table 5.  Static dipole polarizabilities (in a.u.) calculated using the correlated B-spline basis sets for the excited $n\, ^1 S_0(n=2-7)$ and $n\, ^3 S_1(n=2-7)$ states of $^4$He. For the tensor polarizability of the $n\, ^3 S_1$ states, the number before the slash corresponds to the contribution from the $n\, ^3 P_J$ intermediate states, and the number after the slash corresponds to the contribution from the $n\, ^3 D_1$ intermediate states. Numbers in parentheses represent computational uncertainties.

    n $ \alpha_1(n\, ^1 S_0) $ $ \alpha_1^S(n\, ^3 S_1) $ $ \alpha_1^T(n\, ^3 S_1) $
    2 800.521 95(14) 315.728 536(48) 0.002 764 488(2)/0.000 726 892(6)
    3 16 890.527 5(28) 7 940.549 4(13) 0.097 155 09(3)/–0.005 470(2)
    4 135 875.295(23) 68 677.988(11) 0.955 8(3)/–0.118 9(2)
    5 669 694.55(11) 351 945.328(60) 5.267 6(2)/–0.782 9(3)
    6 2 443 625.15(40) 1 315 529.52(23) 20.654(3)/–3.291(2)
    7 7 269 026.8(1.2) 3 977 532.95(69) 64.62(3)/–10.65(3)
    下载: 导出CSV

    表 6  在激光偏振与量子轴夹角不同的情形下, 氦原子413 nm幻零波长(纳米单位)的结果比对. 第三列代表偏振方向与量子轴平行, 且初态磁量子数$M_J=0$时的情况; 第四列代表偏振方向与量子轴平行, 且初态磁量子数为$M_J=\pm 1$时的情况; 第五列代表偏振方向与量子轴垂直, 且初态量子数$M_J=\pm 1$时的情况

    Table 6.  Comparison of the 413 nm tune-out wavelength (in nm) for the $2\, ^3 S_1$ state of 4He, with varying the initial magnetic quantum number$M_J$ values, under different angles between laser polarization and the quantization axis. The third column represents the case where the polarization direction is parallel to the quantization axis and $M_J=0$. The fourth column represents the case where the polarization direction is parallel to the quantization axis but with $M_J=\pm 1$. The fifth column represents the case where the polarization direction is perpendicular to the quantization axis, with $M_J=\pm 1$.

    Reference Method $ \alpha_1^S(\omega)-2\alpha_1^T(\omega) $ $ \alpha_1^S(\omega)+\alpha_1^T(\omega) $ $ \alpha_1^S(\omega)-\frac{1}{2}\alpha_1^T(\omega) $
    Ref. [6] Hybrid model 413.02(9)
    Ref. [89] Expt. 413.0938(9$ _{stat} $)(20$ _{syst} $)
    Ref. [47] RCI 413.080 1(4) 413.085 9(4)
    Ref. [49] RCI+NRQED 413.084 26(4) 413.090 15(4)
    Ref. [15] Expt. 413.087 08(15)
    Ref. [15] NRQED 413.087 179(6)
    Ref. [90] RCIRP 413.084 28(5) 413.090 17(3) 413.087 23(3)
    下载: 导出CSV

    表 7  氦原子$2\, ^3 S\rightarrow 2\, ^1 S$双禁戒跃迁下319.8 nm魔幻波长理论与实验的对比

    Table 7.  Comparison of the 319.8 nm magic wavelength between theory and experiment for the doubly forbidden transition $2\, ^3 S\rightarrow 2\, ^1 S$ of helium.

    Isotopes Theory Experiment
    4He 319.815 3(6) nm [48] 319.815 92(15)nm [96]
    3He 319.830 2(7) nm [48] 319.830 80(15)nm [97]
    下载: 导出CSV
  • [1]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791

    [2]

    Patkóš V, Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [3]

    Patkóš V, Yerokhin V A, Pachucki K 2017 Phys. Rev. A 95 012508

    [4]

    Patkóš V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [5]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803

    [6]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [7]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [8]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Bethe H A 1947 Phys. Rev. 72 339

    [11]

    Karshenboim S G 2005 Phys. Rep. 422 1

    [12]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324

    [13]

    Drake G W F 2023 Handbook of Atomic, Molecular and Optical Physics (Cham: Springer Nature Switzerland AG 2023

    [14]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [15]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [16]

    James H M, Coolidge A S 1935 Phys. Rev. 47 700

    [17]

    Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D, Varga K 2013 Rev. Mod. Phys. 85 693Google Scholar

    [18]

    McKenzie D M, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [19]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 46 2378Google Scholar

    [20]

    Yan Z C, Drake G W F 1995 Phys. Rev. A 52 3711Google Scholar

    [21]

    Yan Z, Drake G W F 1997 J. Phys. B 30 4723Google Scholar

    [22]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [23]

    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [24]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [25]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [26]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [27]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [28]

    Schoenberg I J 1946 Quart. Appl. Math. 4 45Google Scholar

    [29]

    Schoenberg I J 1967 New York: Academic Press 255

    [30]

    de Boor C 1978 A practical guide to Splines (New York: Springer

    [31]

    Johnson W R, Sapirstein J 1986 Phys. Rev. Lett. 57 1126Google Scholar

    [32]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307Google Scholar

    [33]

    Grant I P 1982 Phys. Rev. A 25 1230Google Scholar

    [34]

    Fischer C F 2008 Adv. At. Mol. Opt. Phys. 55 235

    [35]

    Bachau H, Cormier E, Decleva P, Hansen J E, Martín F 2001 Rep. Prog. Phys. 64 1815Google Scholar

    [36]

    Xi J H, He X H, Li B W 1992 Phys. Rev. A 46 5806Google Scholar

    [37]

    Xi J H, Wu L J, Li B W 1993 Phys. Rev. A 47 2701Google Scholar

    [38]

    Rao J G, Liu W Y, Li B W 1994 Phys. Rev. A 50 1916Google Scholar

    [39]

    Qiao H X, Li B W 1999 Phys. Rev. A 60 3134Google Scholar

    [40]

    Wu L J 1996 Phys. Rev. A 53 139Google Scholar

    [41]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70 012506Google Scholar

    [42]

    Zhang Y H, Tang L Y, Zhang X Z, Jiang J, Mitroy J 2012 J. Chem. Phys. 136 174107Google Scholar

    [43]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y, Mitroy J 2012 Chin. Phys. Lett. 29 063101Google Scholar

    [44]

    Tang L Y, Zhang Y H, Zhang X Z, Jiang J, Mitroy J 2012 Phys. Rev. A 86 012505Google Scholar

    [45]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2015 Phys. Rev. A 92 012515Google Scholar

    [46]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Chin. Phys. B 25 103101Google Scholar

    [47]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [48]

    Wu F F, Yang S J, Zhang Y H, Zhang J Y, Qiao H X, Shi T Y, Tang L Y 2018 Phys. Rev. A 98 040501(RGoogle Scholar

    [49]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502(RGoogle Scholar

    [50]

    Zhang Y H, Tang L Y, Shi T Y 2021 Phys. Rev. A 104 042817Google Scholar

    [51]

    Zhang Y H, Tang L Y, Zhang J Y, Shi T Y 2021 Phys. Rev. A 103 032810Google Scholar

    [52]

    Yang S J, Mei X S, Shi T Y, Qiao H X 2017 Phys. Rev. A 95 062505Google Scholar

    [53]

    Fang H, Zhang Y H, Zhang P P, Shi T Y 2023 Phys. Rev. A 108 062818Google Scholar

    [54]

    Fang H, Zhang Y H, Li-Yan T, Shi T Y Phys. Rev. A 110

    [55]

    Yang S J, Tang Y B, Zhao Y H, Shi T Y, Qiao H X 2019 Phys. Rev. A 100 042509Google Scholar

    [56]

    Decleva P, Lisini A, Venuti M 1995 Int. J. Quantum Chem. 56 27Google Scholar

    [57]

    Chen M H, Cheng K T, Johnson W R 1993 Phys. Rev. A 47 3692Google Scholar

    [58]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101Google Scholar

    [59]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72 241Google Scholar

    [60]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76 679

    [61]

    Goldman S P 1984 Phys. Rev. A 30 1219Google Scholar

    [62]

    Goldman S P, Drake G W F 2000 Can. J. Phys. 61 052513

    [63]

    Drake G W F, Goldman S P 2000 Can. J. Phys. 77 835Google Scholar

    [64]

    Goldman S P 1994 Phys. Rev. A 50 3039Google Scholar

    [65]

    Zhang Y H, Shen L J, Xiao C M, Zhang J Y, Shi T Y 2020 J. Phys. B 53 135003Google Scholar

    [66]

    Jentschura U D, Mohr P J 2005 Phys. Rev. A 72 012110Google Scholar

    [67]

    Tang Y B, Zhong Z X, Li C B, Qiao H X, Shi T Y 2013 Phys. Rev. A 87 022510Google Scholar

    [68]

    Kabir P K, Salpeter E E 1957 Phys. Rev. 108 1256Google Scholar

    [69]

    Dalgarno A, Stewart A L 1960 Proc. Phys. Soc. A 76 49Google Scholar

    [70]

    Schwartz C 1961 Phys. Rev. 123 1700Google Scholar

    [71]

    Korobov V I, Korobov S V 1999 Phys. Rev. A 59 3394Google Scholar

    [72]

    Korobov V I 2012 Phys. Rev. A 85 042514Google Scholar

    [73]

    Korobov V I 2019 Phys. Rev. A 100 012517Google Scholar

    [74]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508Google Scholar

    [75]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [76]

    Arora B, Sahoo B K 2014 Phys. Rev. A 89 022511Google Scholar

    [77]

    Porsev S G, Safronova M S, Derevianko A, Clark C W 2014 Phys. Rev. A 89 022703Google Scholar

    [78]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [79]

    Puchalski M, Szalewicz K, Lesiuk M, Jeziorski B 2020 Phys. Rev. A 101 022505Google Scholar

    [80]

    Dzuba V A, Flambaum V V, Sushkov O P 1997 Phys. Rev. A 56 R4357Google Scholar

    [81]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B 43 202001Google Scholar

    [82]

    Derevianko A, Savukov I M, Johnson W R, Plante D R 1998 Phys. Rev. A 58 4453Google Scholar

    [83]

    Johnson W, Plante D, Sapirstein J 1995 Adv. At., Mol., Opt. Phys. 35 255

    [84]

    Pachucki K, Komasa J 2004 Phys. Rev. Lett. 92 213001Google Scholar

    [85]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [86]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [87]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [88]

    Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [89]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [90]

    Lu S S, Zhang Y H, Shi T Y, Tang L Y 2025 J. Phys. B 58 035002Google Scholar

    [91]

    Katori H, Takamoto M, Pal'chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [92]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001Google Scholar

    [93]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [94]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz 2022 Nature 602 425Google Scholar

    [95]

    McGrew W F, Zhang X, Fasano R J, Sch$\ddot{a} $ffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87

    McGrew W F, Zhang X, Fasano R J, Sch $\ddot{a} $ffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87

    [96]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [97]

    van der Werf Y, Steinebach K, Jannin R, Bethlem H L, Eikema K S E 2023 arXiv: 2306.02333 v1

    [98]

    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, Truscott A G 2020 Phys. Rev. Lett. 125 013002Google Scholar

  • [1] 高克林. 少电子原子分子精密谱编者按. 物理学报, doi: 10.7498/aps.73.200101
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算. 物理学报, doi: 10.7498/aps.73.20240177
    [3] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量. 物理学报, doi: 10.7498/aps.73.20241231
    [4] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, doi: 10.7498/aps.72.20221990
    [5] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, doi: 10.7498/aps.70.20201386
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, doi: 10.7498/aps.65.143101
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.113101
    [9] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 物理学报, doi: 10.7498/aps.63.167801
    [10] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.013601
    [11] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, doi: 10.7498/aps.59.2401
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, doi: 10.7498/aps.58.3390
    [13] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 物理学报, doi: 10.7498/aps.57.116
    [14] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 物理学报, doi: 10.7498/aps.54.3000
    [15] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, doi: 10.7498/aps.54.1149
    [16] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究. 物理学报, doi: 10.7498/aps.53.1793
    [17] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, doi: 10.7498/aps.52.3002
    [18] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率. 物理学报, doi: 10.7498/aps.42.422
    [19] 申三国, 范希庆. Si中B-空位复合缺陷的电子结构. 物理学报, doi: 10.7498/aps.40.616
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  230
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-15
  • 修回日期:  2025-02-07
  • 上网日期:  2025-02-21

/

返回文章
返回