搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al含量对Li1+xAlxTi2–x(PO4)3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

李梅 严怡 蓝雯欣 孙宝珍 吴木生 徐波 欧阳楚英

引用本文:
Citation:

Al含量对Li1+xAlxTi2–x(PO4)3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

李梅, 严怡, 蓝雯欣, 孙宝珍, 吴木生, 徐波, 欧阳楚英

Effects of Al content on stability, electronic structure, and Li-ion diffusion properties of Li1+xAlxTi2–x(PO4)3 surface

LI Mei, YAN Yi, LAN Wenxin, SUN Baozhen, WU Musheng, XU Bo, OUYANG Chuying
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • NASICON型Li1+xAlxTi2–x(PO4)3(LATP)作为锂离子电池极具潜力的固态电解质而备受瞩目. 本文采用第一性原理计算与分子动力学模拟相结合的方法对3种Al掺杂浓度(2AlTi, 4AlTi, 6AlTi)的LATP表面进行研究, 深入探究Al含量对LATP表面的稳定性、电子导电性及Li+输运特性的影响. 研究结果表明, Li-原子终端的(012)面为最稳定晶面, 且LATP(012)表面随Al含量的增大而更为稳定. 电子结构分析表明, LiTi2(PO4)3(LTP)表面保持与体相一致的半导体性质, 而LATP表面则呈现出金属性, 这是LATP表面锂枝晶生长的一个原因; Li+输运性质的研究果表明, 对于LTP/LATP表面, 高势垒(大于2.00 eV)使得Li+不能从次表层迁移到最表层; 在最表层中, Li+的最低迁移势垒为0.87 eV, 明显高于其体相的最小值 (0.34 eV). 缓慢的Li+迁移速度是LATP表面锂枝晶生长的另一个重要原因. 幸运地是, 通过提高Al掺杂浓度, 可降低Li+的迁移势垒, 进而提高Li+在LATP表面的扩散性能. 分子动力学模拟进一步揭示Li+在LATP表面的扩散行为主要受到Al含量、Li+占位以及环境温度这些因素的共同影响. 因此, LATP表面的金属性和较高的Li+迁移势垒是其表面锂枝晶生长的两个重要原因. 通过调控Al含量、Li+占位以及环境温度能够不同程度地缓解LATP表面的锂枝晶生长.
    NASICON-type Li1+xAlxTi2–x(PO4)3 (LATP), as a promising solid-state electrolyte for lithium-ion batteries, has received significant attention due to its simple preparation , low material cost, and good stability in water and air, but the formation of lithium dendrite greatly limits the applications. To elucidate the source of formation of lithium dendrite, in this study, the effects of Al content on the stability, electronic and Li+ mobility properties of the LATP surface with three Al doping concentrations (2AlTi, 4AlTi, 6AlTi) are investigated by combining first-principles calculations and molecular dynamics simulations. The LiTi2(PO4)3 (LTP) surface is also considered for comparison. The results indicate that the (012) surface terminated with Li atoms is the most stable facet. Further, the surface energy of LATP(012) decreases from 0.68 J/m2 to 0.43 J/m2 with the increase of Al content, suggesting that Al doping can effectively improve the stability of the LATP(012) surface. Electronic structure analysis reveals that the surface of LTP(012) retains the semiconductor properties consistent with the bulk phase, whereas the LATP(012) surface exhibits metallicity, which provides an electron pathway for forming the metallic Li . Consequently, the metallic characteristic of the LATP(012) surface is a reason for its lithium dendrite growth. For the Li+ transport properties, two different migration modes: vacancy migration and interstitial migration, are included. When Li+ migrates within the outermost surface, the migration barrier via vacancy is 1.67/1.69 eV for the LTP/LATP (012) surface, while the migration barrier via interstitial is 1.16 eV for LTP(012) and decreases from 1.31 to 0.87 eV with the increase of Al content for LATP(012). Obviously, within the outermost surface, Al doping can reduce the migration barrier of Li+. When Al doping concentration is 6AlTi, the migration barrier is lowest (0.87 eV). Nevertheless, the lowest migration barrier (0.87 eV) for Li+ on the LATP surface is significantly higher than its bulk minimum value of 0.34 eV. When Li+ migrates from the subsurface layer to the outermost surface, the migration barrier is 2.76 eV for LTP(012) and 2.05 eV, 3.20 eV, and 3.06 eV for LATP(012) with 2AlTi, 4AlTi, and 6AlTi content, respectively. All these migration barriers are greater than 2.00 eV, which prevents Li+ from migrating from the subsurface layer to the outermost surface for both LTP and LATP surfaces. Hence, the slow Li+ migration represents another important factor contributing to lithium dendrite growth on the LATP surface. Fortunately, increasing the Al doping concentration can reduce the migration barrier of Li+ and thus enhance its diffusion performance on the LATP surface. Molecular dynamics simulations further reveal that the diffusion behavior of Li+ on the LATP surface is influenced by a combination of factors, including Al content, Li+ occupancy, and ambient temperature. In particular, LATP(012)/6AlTi, LATP(012)/4AlTi, and LATP(012)/2AlTi possess their highest Li+ diffusion coefficients at 900 K, 1100 K, and 1300 K, respectively. Besides, Li+ near the Al doping site is easier to diffuse on the LATP(012) surface. Thus, our study indicates that by changing Al content, Li+ occupation positions, and the temperature, the Li+ diffusion performance of LATP(012) can be effectively modified, thereby suppressing the formation of lithium dendrites on the LATP(012) surface.
  • 图 1  不同晶面的LTP表面结构图 (a) Li-LTP (012); (b) O-LTP (100); (c) O-LTP (101); (d) Ti-LTP (101); (e) Li-LTP (001); (f) Ti/O-LTP (001)

    Fig. 1.  LTP surfaces with different crystal face: (a) Li-LTP (012); (b) O-LTP (100); (c) O-LTP (101); (d) Ti-LTP (101); (e) Li-LTP (001); (f) Ti/O-LTP (001).

    图 2  (a) 含有4层Ti原子层的Li-LTP(012)面的表面结构; (b1)—(b5) Li-LTP(012)表面中每个Ti原子层和LTP体相中Ti的投影态密度图, 能量为0处设为费米能级

    Fig. 2.  (a) The atomic structure of the Li-LTP(012) surface with 4 Ti atomic layers; (b1)–(b5) the partial density of states (PDOS) corresponding to each Ti atomic layer on the Li-LTP(012) surface and the Ti layers in the LTP bulk, the energy level at 0 is set as the Fermi level.

    图 3  (a1)—(c1) 优化前不同Al含量下的LATP(012)表面模型; (a2)—(c2) 优化后不同Al含量下的LATP(012)表面模型

    Fig. 3.  LATP(012) surface with different Al contents before optimization (a1)–(c1) and after optimization (a2)–(c2).

    图 4  LTP和LATP表面模型的总态密度(TDOS)和投影态密度(PDOS)

    Fig. 4.  TDOS and PDOS of LTP and LATP surfaces.

    图 5  Li+在LTP和LATP表面的迁移势垒和相应迁移路径 (a1), (a2) 最表层空位迁移; (b1), (b2) 最表层间隙位迁移; (c1), (c2) 次表层到最表层间隙位

    Fig. 5.  Migration barriers and corresponding migration path for Li+ migration on the LTP and LATP surfaces: (a1), (a2) Vacancy and (b1), (b2) interstitial migration on the outermost layer, (c1), (c2) interstitial migration from the subsurface layer to the outermost layer.

    图 6  在温度为900, 1100和1300 K时, Li+在LTP(a)和LATP (012) (b)—(d)表面的MSD随时间的变化曲线图

    Fig. 6.  The time dependence of MSDs for Li ions at 900, 1100 and 1300 K: (a) LTP(012) surface; (b)–(d) LATP(012) surfaces with different Al content.

    图 7  三种LATP(012)表面结构中不同位置Li的扩散情况 (a1)—(a3)为不同原子层的Li+的MSD图; (b1)—(b3)为最表层中Li6b和Li18e位的Li+的MSD图

    Fig. 7.  Li diffusion at different positions on three LATP(012) surface: (a1)–(a3) MSD diagrams of Li+ on different atomic layers; (b1)–(b3) MSD diagrams of Li+ at Li6b and Li18e positions on the outermost layer.

    表 1  不同晶面指数的LTP表面的表面能 ($ \gamma $).

    Table 1.  Surface energy ($ \gamma $) of LTP surfaces with different crystal face.

    FacetsTermination$ \gamma $/(J·m–2)
    (012)Li-0.85
    (100)O-1.71
    (101)O-1.70
    Ti-1.88
    (001)Li-2.31
    Ti/O-2.41
    下载: 导出CSV

    表 2  不同Al含量LATP(012)表面的表面能 ($ \gamma $)和化学式 (SFs)

    Table 2.  Surface energy ($ \gamma $) and structural formulas (SFs) of the LATP(012) surface with different Al content.

    SurfaceSFs$ \gamma $/(J·m–2)
    LATP(012)/2AlTiLi14Al2Ti22P36O1440.68
    LATP(012)/4AlTiLi16Al4Ti20P36O1440.60
    LATP(012)/6AlTiLi18Al6Ti18P36O1440.43
    下载: 导出CSV

    表 3  在温度为900, 1100和1300 K时, LTP和LATP(012)表面结构中Li+平均扩散系数和电导率

    Table 3.  Average Li+ diffusion coefficient and conductivity on the LTP and LATP (012) surfaces at 900, 1100 and 1300 K.

    温度/K结构扩散系数/
    (cm2·S–1)
    电导率/
    (S·cm–1)
    900LTP(012)7.56×10–66.80×10–6
    LATP(012)/2AlTi6.59×10–67.30×10–6
    LATP(012)/4AlTi3.24×10–54.04×10–5
    LATP(012)/6AlTi4.50×10–56.21×10–5
    1100LTP(012)4.81×10–63.56×10–6
    LATP(012)/2AlTi2.42×10–52.18×10–5
    LATP(012)/4AlTi3.88×10–53.95×10–5
    LATP(012)/6AlTi2.56×10–52.89×10–5
    1300LTP(012)2.26×10–51.42×10–5
    LATP(012)/2AlTi5.50×10–54.21×10–5
    LATP(012)/4AlTi2.36×10–52.03×10–5
    LATP(012)/6AlTi3.11×10–52.97×10–5
    下载: 导出CSV
  • [1]

    Zhang S, Ma J, Dong S M, Cui G L 2023 Electrochem. Energy Rev. 6 40

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16

    [3]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [4]

    Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y 2018 Adv. Energy Mater. 8 31

    [5]

    Zhang Z Z, Shao Y J, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L Q 2018 Energy Environ. Sci. 11 1945Google Scholar

    [6]

    Zheng F, Kotobuki M, Song S F, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [7]

    Subramanian M, Subramanian R, Clearfield A 1986 Solid State Ion. 18 562

    [8]

    Adachi G y, Imanaka N, Aono H 1996 Adv. Mater. 8 127Google Scholar

    [9]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [10]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ion. 201 49Google Scholar

    [11]

    Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25Google Scholar

    [12]

    Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Storage 73 12

    [13]

    Arbi K, Lazarraga M G, Chehimi D B, Ayadi-Trabelsi M, Rojo J M, Sanz J 2004 Chem. Mater. 16 255Google Scholar

    [14]

    Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290Google Scholar

    [15]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Chem. Mater. 55 2941

    [16]

    Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129 13Google Scholar

    [17]

    Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloy. Compd. 775 1147Google Scholar

    [18]

    Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interface 12 54752Google Scholar

    [19]

    Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon B W, Lu W 2023 Adv. Energy Mater. 13 2203440Google Scholar

    [20]

    Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer S P, Yu S, Wengert S, Rostami S, Kungl H, Reuter K 2021 Adv. Energy Mater. 11 2100707Google Scholar

    [21]

    Kresse G, Hafner J 1994 J. Phys. : Condens. Matter 6 8245Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Perdew J P, Ernzerhof M, Burke K 1996 Chem. Phys. 105 9982

    [26]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [27]

    Henkelman G, Uberuaga B P, Jónsson H 2000 Chem. Phys. 113 9901

    [28]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [29]

    Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351Google Scholar

    [30]

    李梅, 钟淑英, 胡军平, 孙宝珍, 徐波 2024 物理学报 73 362

    Li M, Zhong S Y, Hu J P, Sun B Z, Xu B 2024 Acta Phys. Sin. 73 362

    [31]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S 2019 Nat. Energy 4 187Google Scholar

    [32]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [33]

    Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 InfoMat. 3 1195Google Scholar

  • [1] 张妮妮, 任娟, 罗澜茜, 刘平平. Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20240996
    [2] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231681
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [4] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善. 物理学报, doi: 10.7498/aps.71.20221050
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, doi: 10.7498/aps.71.20211619
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [7] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, doi: 10.7498/aps.70.20202214
    [8] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, doi: 10.7498/aps.70.20211619
    [9] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210227
    [10] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, doi: 10.7498/aps.69.20201218
    [11] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, doi: 10.7498/aps.69.20201293
    [12] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [13] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, doi: 10.7498/aps.68.20182302
    [14] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [15] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.246801
    [16] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, doi: 10.7498/aps.60.077104
    [17] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
    [18] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [19] 周正存, 韩福生. Al含量对Fe-Al合金Zener弛豫的影响. 物理学报, doi: 10.7498/aps.54.251
    [20] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, doi: 10.7498/aps.53.2710
计量
  • 文章访问数:  330
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-05
  • 修回日期:  2025-02-07
  • 上网日期:  2025-02-21

/

返回文章
返回