搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三味中微子振荡的量子资源特性研究

王光杰 宋学科 叶柳 王栋

引用本文:
Citation:

三味中微子振荡的量子资源特性研究

王光杰, 宋学科, 叶柳, 王栋
cstr: 32037.14.aps.74.20250029

Review of quantum resource characteristics in three-flavor neutrino oscillations

WANG Guangjie, SONG Xueke, YE Liu, WANG Dong
cstr: 32037.14.aps.74.20250029
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 中微子振荡是一个有趣的物理现象, 其量子性能够在宏观距离的振荡上得以保持并被检测到. 中微子振荡的量子资源特性是一个值得探索的主题, 这种在粒子物理学和量子信息学之间建立起的联系, 对于研究基本粒子的基本性质以及探索将中微子作为一种资源应用于量子信息处理的可能性而言, 都有着重要意义. 因此, 中微子物理学与量子信息理论的交叉研究受到了越来越多的关注. 这篇综述主要介绍利用量子资源理论来表征三味中微子振荡的量子资源特性, 包括量子纠缠、量子相干、量子非局域性和熵不确定度等. 除此之外, 还介绍了三味中微子振荡中的量子资源理论的权衡关系, 主要基于单配性关系和完全互补性关系, 这些权衡关系可以帮助我们有效理解量子资源如何在中微子振荡中转化和分配. 中微子振荡的量子信息理论研究仍处于不断发展中, 期望本综述能为该领域的发展带来启示.
    Studying the quantum resources of neutrino oscillations is a topic worth exploring. This review mainly introduces the use of quantum resource theory to characterize the quantum resource characteristics of three-flavor neutrino oscillations, and the specific evolutionary patterns of different entanglement measures in three-flavor neutrino oscillations. In addition, by comparing the cases of different entanglement evolutions, the optimal method of quantifying entanglement in three-flavor neutrino oscillations can be obtained. Moreover, this review also focuses on the quantifying the quantumness of neutrino oscillation observed experimentally by using the l1-norm of coherence. The maximal coherence is observed in the neutrino source from the KamLAND reactor. Furthermore, we examine the violation of the Mermin inequality and Svetlichny inequality to study the nonlocality in three-flavor neutrino oscillations. It is shown that even though the genuine tripartite nonlocal correlation is usually existent, it can disappear within specific time regions. In addition, this review also presents the trade-off relations in the quantum resource theory of three-flavor neutrino oscillations, mainly based on monogamy relations and complete complementarity relations. It is hoped that this review can bring inspiration to the development of this field.
      通信作者: 宋学科, songxk@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62471001, 12475009, 12075001, 12175001, 12004006)、安徽省自然科学基金(批准号: 2022b13020004, 2008085QA43)和安徽省高校科研计划(批准号: 2024AH050068, 2024AH040008)资助的课题.
      Corresponding author: SONG Xueke, songxk@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62471001, 12475009, 12075001, 12175001, 12004006), the Natural Science Foundation of Anhui Province, China (Grant Nos. 2022b13020004, 2008085QA43), and the Scientific Research Project of Universities in Anhui Province, China (Grant Nos. 2024AH050068, 2024AH040008).
    [1]

    Pontecorvo B 1958 Sov. Phys. JETP 7 172 1958

    [2]

    Maki Z, Nakagawa M, Sakata S 1962 Prog. Theor. Phys. 28 870Google Scholar

    [3]

    Ahmad Q R (SNO Collaboration) 2002 Phys. Rev. Lett. 89 011302Google Scholar

    [4]

    Altmann M, Balata M, Belli P 2005 Phys. Lett. B 616 174Google Scholar

    [5]

    Fukuda S, Fukuda Y, Ishitsuka M 2002 Phys. Lett. B 539 179Google Scholar

    [6]

    Araki T, Eguchi K, Enomoto S 2005 Phys. Rev. Lett. 94 081801Google Scholar

    [7]

    An F P, Bai J Z, Balantekin A B 2012 Phys. Rev. Lett. 108 171803Google Scholar

    [8]

    Ahn M H, Aliu E, Andringa S 2006 Phys. Rev. D 74 072003Google Scholar

    [9]

    Adamson P 2008 Phys. Rev. Lett. 101 131802Google Scholar

    [10]

    An F P, Balantekin A B, Band H R 2015 Phys. Rev. Lett. 115 111802Google Scholar

    [11]

    Minakata H, Smirnov A Y 2012 Phys. Rev. D 85 113006Google Scholar

    [12]

    Gando A, Gando Y, Hanakago H 2013 Phys. Rev. D 88 033001Google Scholar

    [13]

    Emary G, Lambert N, Nori F 2014 Rep. Prog. Phys. 77 039501Google Scholar

    [14]

    Gangopadhyay D, Home D, Roy A S 2013 Phys. Rev. A 88 022115Google Scholar

    [15]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001Google Scholar

    [16]

    Devetak I, Harrow A W, Winter A J 2008 IEEE Trans. Inf. Theory 54 4587Google Scholar

    [17]

    Horodecki M, Oppenheim J 2013 Int. J. Mod. Phys. B 27 1345019Google Scholar

    [18]

    Sudha, Usha Devi A R, Rajagopal A K 2012 Phys. Rev. A 85 012103Google Scholar

    [19]

    Bai Y K, Zhang N, Ye M Y, Wang Z D 2013 Phys. Rev. A 88 012123Google Scholar

    [20]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [21]

    Susa Y, Tanaka S 2015 Phys. Rev. A 92 012112Google Scholar

    [22]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

    [23]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275Google Scholar

    [24]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [25]

    Bancal J D, Branciard C, Gisin N, Pironio S 2009 Phys. Rev. Lett. 103 090503Google Scholar

    [26]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [27]

    He Q, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [28]

    Horodecki R, Horodecki P, Horodecki M 2009 Rev. Mod. Phys. 81 865Google Scholar

    [29]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [30]

    Raussendorf R, Briegel J H 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [31]

    Albash T, Lidar A D 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Beaudry J N, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062303Google Scholar

    [33]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [34]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306Google Scholar

    [35]

    Kim J S, Das A, Sanders B C 2009 Phys. Rev. A 79 012329Google Scholar

    [36]

    Greenberger D M, Yasin A 1988 Phys. Lett. A 128 391Google Scholar

    [37]

    Jaeger G, Horne M A, Shimony A 1993 Phys. Rev. A 48 1023Google Scholar

    [38]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127903Google Scholar

    [39]

    Fu Q, Chen X 2017 Eur. Phys. J. C 77 775Google Scholar

    [40]

    Song X K, Huang Y Q, Ling J J, Yung M H 2018 Phys. Rev. A 98 050302(RGoogle Scholar

    [41]

    Dixit K, Alok A K 2021 Eur. Phys. J. Plus 136 334Google Scholar

    [42]

    Askaripour Ravari Z A, Ettefaghi M M, Miraboutalebi S 2022 Eur. Phys. J. Plus 137 488Google Scholar

    [43]

    Ming F, Fang B L, Hu X Y, Yu Y 2024 Eur. Phys. J. Plus 139 229Google Scholar

    [44]

    Kurashvili P, Chotorlishvili L, Kouzakov K 2021 Eur. Phys. J. C 81 323Google Scholar

    [45]

    Ettefaghi M M, Askaripour Ravari Z 2023 Eur. Phys. J. C 83 417Google Scholar

    [46]

    Blasone M, Dell’Anno F, De Siena S, Illuminati F 2009 Eur. Phys. Lett. 85 50002Google Scholar

    [47]

    Blasone M, Dell’Anno F, Di Mauro M, De Siena S, Illuminati F 2008 Phys. Rev. D 77 096002Google Scholar

    [48]

    Bittencourt V A S V, Blasone M, Zanfardino G 2023 J. Phys. Conf. Ser. 2533 012024Google Scholar

    [49]

    Alok A K, Banarjee S, Sankar S U 2016 J. Nucl. Phys. B 909 65Google Scholar

    [50]

    Banarjee S, Alok A K, Srikanth R, Hiesmayr B C 2015 Eur. Phys. J. C 75 487Google Scholar

    [51]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. C 82 799Google Scholar

    [52]

    Blasone M, Dell’Anno F, De Siena S, Illuminati F 2015 Eur. Phys. Lett. 112 20007Google Scholar

    [53]

    Das T, Singha Roy S, Bagchi S 2016 Phys. Rev. A 94 022336Google Scholar

    [54]

    Sadhukhan D, Singha Roy S, Pal A K 2017 Phys. Rev. A 95 022301Google Scholar

    [55]

    Ou Y C, Fan H 2007 Phys. Rev. A 75 062308Google Scholar

    [56]

    Ma Z H, Chen Z H, Chen J L 2011 Phys. Rev. A 83 062325Google Scholar

    [57]

    Xie S B, Eberly J H 2021 Phys. Rev. Lett. 127 040403Google Scholar

    [58]

    Blasone M, Dell’Anno F, De Siena S, Matrella C 2024 Eur. Phys. J. C 84 301Google Scholar

    [59]

    Ming F, Song X K, Li L J, Wang D 2020 Eur. Phys. J. C 80 275Google Scholar

    [60]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. Plus 137 1267Google Scholar

    [61]

    Wang G J, Li L J, Wu T, Song X K, Ye L, Wang D 2024 Eur. Phys. J. C 84 1127Google Scholar

    [62]

    Blasone M, De Siena S, Matrella1 C 2021 Eur. Phys. J. C 81 660Google Scholar

    [63]

    Blasone M, De Siena S, Matrella1 C 2022 Eur. Phys. J. Plus 137 1272Google Scholar

    [64]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [65]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728Google Scholar

    [66]

    Wang G J, Li Y W, Li L J, Song X K, Wang D 2023 Eur. Phys. J. C 83 801Google Scholar

    [67]

    Bittencourt V A S V, Blasone M, DeSiena S, Matrella C 2022 Eur. Phys. J. C 82 566Google Scholar

    [68]

    Bilenky S M, Pontecorvo B 1978 Phys. Rev. 41 225

    [69]

    Giunti C 2007 J. Phys. G: Nucl. Part. Phys. 34 R93Google Scholar

    [70]

    Chakraborty P, Dey M, Roy S 2024 J. Phys. G: Nucl. Part. Phys. 51 015003Google Scholar

    [71]

    Gonzalez-Garcia M C, Maltoni M, Schwetz T 2014 J. High Energy Phys. 11 052Google Scholar

    [72]

    Leggett A J, Garg A 1985 Phys. Rev. Lett. 54 857Google Scholar

    [73]

    Giunti C, Kim C W 1998 Phys. Rev. D 58 017301Google Scholar

    [74]

    Svetlichny G 1987 Phys. Rev. D 35 3066Google Scholar

    [75]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [76]

    Guo Y, Zhang L 2020 Phys. Rev. A 101 032301Google Scholar

    [77]

    Sabín C, García-Alcaine G 2008 Eur. Phys. J. D 48 435Google Scholar

    [78]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S 2019 Phys. Rev. D 99 095001Google Scholar

    [79]

    Abe K, Abgrall N, Aihara H 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 659 106Google Scholar

    [80]

    Patterson R B 2013 Nucl. Phys. B, Proc. Suppl. 235–236 151Google Scholar

    [81]

    Abi B, Acciarri R, Acero M A 2020 Eur. Phys. J. C 80 978Google Scholar

    [82]

    Formaggio J A, Kaiser D I, Murskyj M M, Weiss T E 2016 Phys. Rev. Lett. 117 050402Google Scholar

    [83]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S, Guarnieri G, Schultze C, Hiesmayr B C 2020 Nucl. Phys. B 951 114872Google Scholar

    [84]

    Gangopadhyaya D, Sinha Royb A 2017 Eur. Phys. J. C 77 260Google Scholar

    [85]

    Mermin N D 1990 Phys. Rev. Lett. 65 1838Google Scholar

    [86]

    Alsina D, Latorre J I 2016 Phys. Rev. A 94 012314Google Scholar

    [87]

    Bancal J D, Brunner N, Gisin N 2011 Phys. Rev. Lett. 106 020405Google Scholar

    [88]

    Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402Google Scholar

    [89]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [90]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [91]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502Google Scholar

    [92]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503Google Scholar

    [93]

    Streltsov A, Adesso G, Piani M, Bruss D 2012 Phys. Rev. Lett. 109 050503Google Scholar

    [94]

    Jakob M, Bergou J A 2007 Phys. Rev. A 76 052107Google Scholar

    [95]

    Dixit K, Naikoo J, Mukhopadhyay B, Banerjee S 2019 Phys. Rev. D 100 055021Google Scholar

    [96]

    Yadav B, Sarkar T, Dixit K, Alok A K 2022 Eur. Phys. J. C 82 446Google Scholar

    [97]

    Bittencourt V A S V, Bernardini A E, Blasone M 2021 Eur. Phys. J. C 81 411Google Scholar

    [98]

    Blasone M, Illuminati F, Petruzziello L, Smaldone L 2023 Phys. Rev. A 108 032210Google Scholar

  • 图 1  四种不同种类的纠缠度量, 包括广义的几何测量(GGM)、three-π纠缠、多体共生纠缠(GMC)、concurrence fill, 在三味电子中微子振荡系统和三味μ子中微子振荡系统中的时间演化[51] (a) 三味电子中微子系统中不同多体纠缠测度的演化图像; (b) 三味μ子中微子系统中不同多体纠缠测度的演化图像

    Fig. 1.  Four kinds of multipartite entanglement measures, including generalized geometric measure (GGM), three-π, genuinely multipartite concurrence (GMC), and the concurrence fill for three flavors electron neutrino oscillation system and three flavors muon neutrino oscillations[51]: (a) Dynamic of different multipartite entanglement measures in three flavor electron neutrino system; (b) dynamic of different multipartite entanglement measures in three flavor muon neutrino system.

    图 2  $K_3$对于三个不同实验设置的能量变化[78] (a), (b) DUNE; (c), (d) NOνA; (e), (f) T2K. 其中CP破坏相位δ取不同的值, 时间可以用长度(基线)来确定, DUNE, NOνA和T2K的长度分别为1300, 810和295 km. (a), (c), (e)对应于初始中微子态; (b), (d), (f)对应于初始反中微子态

    Fig. 2.  The Variations in K3 as a function of the energy for three experimental setups for different values of the CP-violating phase δ[78]: (a), (b) DUNE; (c), (d) NOνA; (e), (f) T2K. The time can be identified with the length (baseline) which is 1300, 810 and 295 km for DUNE, NOνA and T2K, respectively. The panels (a), (c), (e) correspond to the initial neutrino state, and panels (b), (d), (f) correspond to the initial antineutrino state.

    图 3  三味电子中微子振荡情况下理论与实验中的相干[40]  (a)来自于大亚湾三个地下实验所获取的实验数据下的相干, 分别由EH1, EH2, EH3对应的误差棒描述; (b) KamLAND合作实验的中微子振荡相干. 图(a)插图分别展示了相干对于中微子生存概率以及比率ξ的导数. 图中红线是理论上的相干, 红色带状区域是理论拟合预测值周围的3σ置信区间的相干. 误差棒所展示的相干在短距离情况下与理论3σ范围内一致

    Fig. 3.  Coherence in theory and experiment for three-flavor electron neutrino oscillations[40]: (a) Coherence based on the experimental data obtained from the Daya Bay collaboration in three underground experimental halls, which is described by the error bars corresponding to EH1, EH2 and EH3 respectively; (b) coherence of neutrino oscillations under the T2K collaboration. The insets in panel (a) show the derivatives of coherence with respect to the neutrino survival probability and the ratio ξ. The red line in the picture shows the coherence in theory, and the red band indicates the coherence within the 3σ confidence interval around the theoretically fitted prediction. The coherence indicated by the error bars is consistent with the theoretical 3σ range in the short-distance case

    图 4  三味μ子中微子振荡情况下理论与实验中的相干[40]. 图中红线是理论上的相干, 红色带状区域是理论拟合预测值周围的3σ置信区间的相干, 黑色方块展示的MINOS合作实验的中微子振荡相干, 蓝色圆圈是T2K实验中微子振荡相干. 误差棒所展示的相干在短距离情况下与理论3σ范围内一致

    Fig. 4.  The coherence in theory and experiment for three-flavor μ neutrino oscillations[40]. The red line shows the coherence in theory, and the red band indicates the coherence within the 3σ confidence interval around the theoretically fitted prediction. The black squares show the coherence of neutrino oscillations in the MINOS collaboration, while the blue circles show the coherence of neutrino oscillations in the T2K collaboration. The coherence indicated by the error bars is consistent with the theoretical 3σ range in the short-distance case.

    图 5  三味中微子振荡情况下参数$M_3$的变化[50] (a)初始电子中微子; (b)初始μ子中微子; (c)初始τ子中微子. 黑色虚线对应于$M_3$的经典界限

    Fig. 5.  Variation of the parameter $M_3$ for three-flavor neutrino oscillations[50]: (a) Initial electron neutrino oscillation; (b) initial μ neutrino oscillation; (c) initial τ neutrino oscillation. The black dotted line corresponds to the classical bound of $M_3$.

    图 6  三味中微子振荡情况下参数$S_3$的变化[50] (a)初始电子中微子; (b)初始μ子中微子; (c)初始τ子中微子. 黑色虚线对应于$S_3$的经典界限

    Fig. 6.  Variation of the parameter $S_3$ for three-flavor neutrino oscillations[50]: (a) Initial electron neutrino oscillation; (b) initial μ neutrino oscillation; (c) initial τ neutrino oscillation. The black dotted line corresponds to the classical bound of $S_3$.

    图 7  总的熵不确定度在三味电子和μ子中微子振荡中的演化[65] (a)总的熵不确定度在电子中微子振荡中的演化, 其中EH1, EH2和EH3是大亚湾合作项目针对三个不同实验提供的数据; (b)总的熵不确定度在电子中微子振荡中的演化. 橄榄线表示总的熵不确定度的理论值, 红线是(62)式中的右式, 对应于总的熵不确定关系的下届, 黑色方块代表MINOS+合作项目的实验数据

    Fig. 7.  The evolution of the total entropic uncertainty in three flavor electron and μ neutrino oscillations[65]: (a) The evolution of the total entropic uncertainty in electron neutrino oscillation, where EH1, EH2 and EH3 are the data addressed from Daya Bay collaboration for three different experimental; (b) the evolution of the total entropic uncertainty in muon neutrino oscillation. The olive line represents the theoretical value of the total entropic uncertainty, and the red line corresponds to the lower bound of the total entropic uncertainty relation. The black squares stand for the experiment data from MINOS+ collaboration.

    图 8  三味电子中微子振荡情况下的单配性关系验证[66] (a)电子中微子振荡中的剩余形成纠缠的平方; (b)剩余失谐的平方与剩余失谐的对比; (c)电子中微子振荡中几何失谐的单配性验证, 可以观察到单配性关系$D_{\mathrm{G}}(\rho^{\mathrm{e}}_{AB})+D_G{\mathrm{}}(\rho^{\mathrm{e}}_{{AC}})=D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{A}\mid {BC}})$在电子中微子振荡中始终保持

    Fig. 8.  Tests of the monogamy relation for three-flavor electron neutrino oscillations[66]: (a) The residual squared entanglement of formation in the electron neutrino oscillations; (b) the residual squared of quantum discord in comparison to the residual quantum discord; (c) the monogamy of the geometric measure of quantum discord in electron neutrino oscillations. One can see that the monogamy relation $D_{\mathrm{G}}(\rho^{\mathrm{e}}_{AB})+D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{{AC}}})=D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{A}\mid {BC}})$ holds in electron tineutrino oscillations.

    图 9  三味μ子中微子振荡情况下的单配性关系验证[66] (a) μ子中微子振荡中的剩余形成纠缠的平方; (b)剩余失谐的平方与剩余失谐的对比; (c) μ子中微子振荡中几何失谐的单配性验证, 可以观察到单配性关系$D_{\mathrm{G}}(\rho^{\mathrm{e}}_{AB})+D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{{AC}}})=D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{A}\mid {BC}})$在μ子中微子振荡中始终保持

    Fig. 9.  Tests of the monogamy relation for three-flavor muon neutrino oscillations[66]: (a) The residual squared entanglement of formation in the μ neutrino oscillations; (b) the residual squared of quantum discord in comparison to the residual quantum discord; (c) the monogamy of the geometric measure of quantum discord in μ neutrino oscillations. One can see that the monogamy relation $D_{\mathrm{G}}(\rho^{\mathrm{e}}_{AB})+D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{{AC}}})=D_{\mathrm{G}}(\rho^{\mathrm{e}}_{{A}\mid {BC}})$ holds in muon tineutrino oscillations.

    图 10  (55)式描述的完全互补性关系中的关联度量在三味中微子振荡中的演化[58] (a)电子中微子振荡中的完全互补性关系中的关联演化; (b) μ子中微子振荡中的完全互补性关系中的关联演化

    Fig. 10.  Evolution of the correlation measures in the complete complementarity relations described by Eq. (55) in three-flavor neutrino oscillations[58]: (a) Evolution of the correlation measures in the complete complementarity relations for electron neutrino oscillations; (b) evolution of the correlation measures in the complete complementarity relations for μ neutrino oscillations.

    图 11  (53)式描述的完全互补性关系中的相关项在三味电子中微子振荡中的演化[58] (a)子系统${\mathrm{e}}{\text{μ}}$中的完全互补性关系; (b)子系统${\mathrm{e}}{\text{τ}}$中的完全互补性关系; (c)子系统${\text{μ}}{\text{τ}}$中的完全互补性关系

    Fig. 11.  The complete complementarity relation terms for three-flavor electron neutrino oscillations[58]: (a) The complete complementarity relation terms for ${\mathrm{e}}{\text{μ}}$ subsystem; (b) the complete complementarity relation terms for ${\mathrm{e}}{\text{τ}}$ subsystem; (c) the complete complementarity relation terms for ${\text{μ}}{\text{τ}}$ subsystem.

    图 12  (53)式描述的完全互补性关系中的相关项在三味μ子中微子振荡中的演化[58] (a)子系统${\mathrm{e}}{\text{μ}}$中的完全互补性关系; (b)子系统${\mathrm{e}}{\text{τ}}$中的完全互补性关系; (c)子系统${\text{μ}}{\text{τ}}$中的完全互补性关系

    Fig. 12.  The complete complementarity relation terms for three-flavor muon neutrino oscillations[58]: (a) The complete complementarity relation terms for ${\text{e}}{\text{μ}}$ subsystem; (b) the complete complementarity relation terms for ${\mathrm{e}}{\text{τ}}$ subsystem; (c) the complete complementarity relation terms for ${\text{μ}}{\text{τ}}$ subsystem.

  • [1]

    Pontecorvo B 1958 Sov. Phys. JETP 7 172 1958

    [2]

    Maki Z, Nakagawa M, Sakata S 1962 Prog. Theor. Phys. 28 870Google Scholar

    [3]

    Ahmad Q R (SNO Collaboration) 2002 Phys. Rev. Lett. 89 011302Google Scholar

    [4]

    Altmann M, Balata M, Belli P 2005 Phys. Lett. B 616 174Google Scholar

    [5]

    Fukuda S, Fukuda Y, Ishitsuka M 2002 Phys. Lett. B 539 179Google Scholar

    [6]

    Araki T, Eguchi K, Enomoto S 2005 Phys. Rev. Lett. 94 081801Google Scholar

    [7]

    An F P, Bai J Z, Balantekin A B 2012 Phys. Rev. Lett. 108 171803Google Scholar

    [8]

    Ahn M H, Aliu E, Andringa S 2006 Phys. Rev. D 74 072003Google Scholar

    [9]

    Adamson P 2008 Phys. Rev. Lett. 101 131802Google Scholar

    [10]

    An F P, Balantekin A B, Band H R 2015 Phys. Rev. Lett. 115 111802Google Scholar

    [11]

    Minakata H, Smirnov A Y 2012 Phys. Rev. D 85 113006Google Scholar

    [12]

    Gando A, Gando Y, Hanakago H 2013 Phys. Rev. D 88 033001Google Scholar

    [13]

    Emary G, Lambert N, Nori F 2014 Rep. Prog. Phys. 77 039501Google Scholar

    [14]

    Gangopadhyay D, Home D, Roy A S 2013 Phys. Rev. A 88 022115Google Scholar

    [15]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001Google Scholar

    [16]

    Devetak I, Harrow A W, Winter A J 2008 IEEE Trans. Inf. Theory 54 4587Google Scholar

    [17]

    Horodecki M, Oppenheim J 2013 Int. J. Mod. Phys. B 27 1345019Google Scholar

    [18]

    Sudha, Usha Devi A R, Rajagopal A K 2012 Phys. Rev. A 85 012103Google Scholar

    [19]

    Bai Y K, Zhang N, Ye M Y, Wang Z D 2013 Phys. Rev. A 88 012123Google Scholar

    [20]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [21]

    Susa Y, Tanaka S 2015 Phys. Rev. A 92 012112Google Scholar

    [22]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

    [23]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275Google Scholar

    [24]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [25]

    Bancal J D, Branciard C, Gisin N, Pironio S 2009 Phys. Rev. Lett. 103 090503Google Scholar

    [26]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [27]

    He Q, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [28]

    Horodecki R, Horodecki P, Horodecki M 2009 Rev. Mod. Phys. 81 865Google Scholar

    [29]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [30]

    Raussendorf R, Briegel J H 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [31]

    Albash T, Lidar A D 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Beaudry J N, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062303Google Scholar

    [33]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [34]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306Google Scholar

    [35]

    Kim J S, Das A, Sanders B C 2009 Phys. Rev. A 79 012329Google Scholar

    [36]

    Greenberger D M, Yasin A 1988 Phys. Lett. A 128 391Google Scholar

    [37]

    Jaeger G, Horne M A, Shimony A 1993 Phys. Rev. A 48 1023Google Scholar

    [38]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127903Google Scholar

    [39]

    Fu Q, Chen X 2017 Eur. Phys. J. C 77 775Google Scholar

    [40]

    Song X K, Huang Y Q, Ling J J, Yung M H 2018 Phys. Rev. A 98 050302(RGoogle Scholar

    [41]

    Dixit K, Alok A K 2021 Eur. Phys. J. Plus 136 334Google Scholar

    [42]

    Askaripour Ravari Z A, Ettefaghi M M, Miraboutalebi S 2022 Eur. Phys. J. Plus 137 488Google Scholar

    [43]

    Ming F, Fang B L, Hu X Y, Yu Y 2024 Eur. Phys. J. Plus 139 229Google Scholar

    [44]

    Kurashvili P, Chotorlishvili L, Kouzakov K 2021 Eur. Phys. J. C 81 323Google Scholar

    [45]

    Ettefaghi M M, Askaripour Ravari Z 2023 Eur. Phys. J. C 83 417Google Scholar

    [46]

    Blasone M, Dell’Anno F, De Siena S, Illuminati F 2009 Eur. Phys. Lett. 85 50002Google Scholar

    [47]

    Blasone M, Dell’Anno F, Di Mauro M, De Siena S, Illuminati F 2008 Phys. Rev. D 77 096002Google Scholar

    [48]

    Bittencourt V A S V, Blasone M, Zanfardino G 2023 J. Phys. Conf. Ser. 2533 012024Google Scholar

    [49]

    Alok A K, Banarjee S, Sankar S U 2016 J. Nucl. Phys. B 909 65Google Scholar

    [50]

    Banarjee S, Alok A K, Srikanth R, Hiesmayr B C 2015 Eur. Phys. J. C 75 487Google Scholar

    [51]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. C 82 799Google Scholar

    [52]

    Blasone M, Dell’Anno F, De Siena S, Illuminati F 2015 Eur. Phys. Lett. 112 20007Google Scholar

    [53]

    Das T, Singha Roy S, Bagchi S 2016 Phys. Rev. A 94 022336Google Scholar

    [54]

    Sadhukhan D, Singha Roy S, Pal A K 2017 Phys. Rev. A 95 022301Google Scholar

    [55]

    Ou Y C, Fan H 2007 Phys. Rev. A 75 062308Google Scholar

    [56]

    Ma Z H, Chen Z H, Chen J L 2011 Phys. Rev. A 83 062325Google Scholar

    [57]

    Xie S B, Eberly J H 2021 Phys. Rev. Lett. 127 040403Google Scholar

    [58]

    Blasone M, Dell’Anno F, De Siena S, Matrella C 2024 Eur. Phys. J. C 84 301Google Scholar

    [59]

    Ming F, Song X K, Li L J, Wang D 2020 Eur. Phys. J. C 80 275Google Scholar

    [60]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. Plus 137 1267Google Scholar

    [61]

    Wang G J, Li L J, Wu T, Song X K, Ye L, Wang D 2024 Eur. Phys. J. C 84 1127Google Scholar

    [62]

    Blasone M, De Siena S, Matrella1 C 2021 Eur. Phys. J. C 81 660Google Scholar

    [63]

    Blasone M, De Siena S, Matrella1 C 2022 Eur. Phys. J. Plus 137 1272Google Scholar

    [64]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [65]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728Google Scholar

    [66]

    Wang G J, Li Y W, Li L J, Song X K, Wang D 2023 Eur. Phys. J. C 83 801Google Scholar

    [67]

    Bittencourt V A S V, Blasone M, DeSiena S, Matrella C 2022 Eur. Phys. J. C 82 566Google Scholar

    [68]

    Bilenky S M, Pontecorvo B 1978 Phys. Rev. 41 225

    [69]

    Giunti C 2007 J. Phys. G: Nucl. Part. Phys. 34 R93Google Scholar

    [70]

    Chakraborty P, Dey M, Roy S 2024 J. Phys. G: Nucl. Part. Phys. 51 015003Google Scholar

    [71]

    Gonzalez-Garcia M C, Maltoni M, Schwetz T 2014 J. High Energy Phys. 11 052Google Scholar

    [72]

    Leggett A J, Garg A 1985 Phys. Rev. Lett. 54 857Google Scholar

    [73]

    Giunti C, Kim C W 1998 Phys. Rev. D 58 017301Google Scholar

    [74]

    Svetlichny G 1987 Phys. Rev. D 35 3066Google Scholar

    [75]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [76]

    Guo Y, Zhang L 2020 Phys. Rev. A 101 032301Google Scholar

    [77]

    Sabín C, García-Alcaine G 2008 Eur. Phys. J. D 48 435Google Scholar

    [78]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S 2019 Phys. Rev. D 99 095001Google Scholar

    [79]

    Abe K, Abgrall N, Aihara H 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 659 106Google Scholar

    [80]

    Patterson R B 2013 Nucl. Phys. B, Proc. Suppl. 235–236 151Google Scholar

    [81]

    Abi B, Acciarri R, Acero M A 2020 Eur. Phys. J. C 80 978Google Scholar

    [82]

    Formaggio J A, Kaiser D I, Murskyj M M, Weiss T E 2016 Phys. Rev. Lett. 117 050402Google Scholar

    [83]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S, Guarnieri G, Schultze C, Hiesmayr B C 2020 Nucl. Phys. B 951 114872Google Scholar

    [84]

    Gangopadhyaya D, Sinha Royb A 2017 Eur. Phys. J. C 77 260Google Scholar

    [85]

    Mermin N D 1990 Phys. Rev. Lett. 65 1838Google Scholar

    [86]

    Alsina D, Latorre J I 2016 Phys. Rev. A 94 012314Google Scholar

    [87]

    Bancal J D, Brunner N, Gisin N 2011 Phys. Rev. Lett. 106 020405Google Scholar

    [88]

    Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402Google Scholar

    [89]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [90]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [91]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502Google Scholar

    [92]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503Google Scholar

    [93]

    Streltsov A, Adesso G, Piani M, Bruss D 2012 Phys. Rev. Lett. 109 050503Google Scholar

    [94]

    Jakob M, Bergou J A 2007 Phys. Rev. A 76 052107Google Scholar

    [95]

    Dixit K, Naikoo J, Mukhopadhyay B, Banerjee S 2019 Phys. Rev. D 100 055021Google Scholar

    [96]

    Yadav B, Sarkar T, Dixit K, Alok A K 2022 Eur. Phys. J. C 82 446Google Scholar

    [97]

    Bittencourt V A S V, Bernardini A E, Blasone M 2021 Eur. Phys. J. C 81 411Google Scholar

    [98]

    Blasone M, Illuminati F, Petruzziello L, Smaldone L 2023 Phys. Rev. A 108 032210Google Scholar

  • [1] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, 2024, 73(23): 230301. doi: 10.7498/aps.73.20241382
    [2] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控. 物理学报, 2024, 73(22): 220301. doi: 10.7498/aps.73.20241171
    [3] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生. 物理学报, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [4] 王东升. 通用量子计算模型: 一个资源理论的视角. 物理学报, 2024, 73(22): 220302. doi: 10.7498/aps.73.20240893
    [5] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [6] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [7] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [8] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [9] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] 冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平. 光和原子关联与量子计量. 物理学报, 2018, 67(16): 164204. doi: 10.7498/aps.67.20180895
    [11] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [12] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响. 物理学报, 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [13] 李艳杰, 刘金明. 极性分子摆动态的三体量子关联. 物理学报, 2014, 63(20): 200302. doi: 10.7498/aps.63.200302
    [14] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [15] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [16] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [17] 曹广涛, 王永久. Kasner 时空中的中微子振荡相位. 物理学报, 2010, 59(8): 5921-5924. doi: 10.7498/aps.59.5921
    [18] 宋建军, 李希国. 量子能谱中的长程关联. 物理学报, 2001, 50(9): 1661-1665. doi: 10.7498/aps.50.1661
    [19] 汪鸿伟. 量子阱中的电子关联. 物理学报, 1997, 46(8): 1618-1624. doi: 10.7498/aps.46.1618
    [20] 邓稼先, 何作庥. β-中微子角关联,β-r角关联和β-能谱因子. 物理学报, 1956, 12(2): 96-126. doi: 10.7498/aps.12.96
计量
  • 文章访问数:  320
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-14
  • 上网日期:  2025-02-25
  • 刊出日期:  2025-04-05

/

返回文章
返回