搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-3装置中性粒子与碳杂质影响偏滤器脱靶的模拟研究

周雨林 吴雪科 徐欣亮 肖国梁 龙婷 高金明 范冬梅 孟晗琪 赵真 王占辉

引用本文:
Citation:

HL-3装置中性粒子与碳杂质影响偏滤器脱靶的模拟研究

周雨林, 吴雪科, 徐欣亮, 肖国梁, 龙婷, 高金明, 范冬梅, 孟晗琪, 赵真, 王占辉

The Role of Neutrals and Carbon in Divertor Detachment in the HL-3 tokamak

ZHOU YuLin, WU XueKe, XINLIANG Xu, XIAO Guoliang, LONG Ting, GAO JinMin, FAN DongMei, MENG HanQi, ZHAO Zhen, WANG ZhanHui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 偏滤器脱靶是中国环流三号装置(HL-3)偏滤器热负载的主要控制手段。然而目前的脱靶工作缺少对刮削层-偏滤器区域内复杂多成分粒子问题的研究,如氢同位素(如氘)、外部注入杂质(如氖杂质)、内部固有杂质(如碳杂质)的碰撞、辐射等过程。本工作使用新开发的刮削层-偏滤器多成分粒子输运程序SD1D,研究了碳杂质和中性粒子对中国环流三号上抬升等离子体密度和偏滤器氖气注入两种脱靶方式的影响。研究发现,偏滤器产生的碳杂质对于抬升密度的脱靶方式具有促进作用,但是对注入氖气实现脱靶的过程影响较小。此外,本工作还发现中性粒子(氘原子与氘分子)在这两种脱靶过程中的重要性也有很大的不同:1)抬升等离子体密度可以促进偏滤器内再循环过程产生大量中性粒子,等离子体与中性粒子反应导致的能量与动量损失是实现脱靶的关键因素;2)向偏滤器内注入氖气直接降低了靶板上饱和电流,抑制了再循环过程,从而中性粒子的重要性也随之降低。
    Divertor detachment is a critical technique for managing the thermal load on the divertor of the HL-3 tokamak, a key device in magnetic confinement fusion research. However, existing studies on detachment have largely overlooked the complex multi-species particle dynamics in the scrape-off layer (SOL) and divertor regions, particularly the interactions involving hydrogen isotopes (e.g., deuterium), externally injected impurities (e.g., neon), and intrinsic impurities (e.g., carbon). This study aims to address this gap by employing the newly developed multi-species particle transport code SD1D to investigate the effects of carbon impurities and neutral particles on two detachment scenarios in HL-3: plasma density ramp-up and neon injection into the divertor.
    The SD1D code models the transport, collision, and radiation processes of various particles, including deuterium ions, atoms, and molecules, as well as carbon and neon impurities, along the magnetic field lines from the SOL upstream to the divertor target. The study focuses on understanding how carbon impurities and neutral particles influence the detachment mechanisms under different conditions.
    The results reveal that carbon impurities generated in the divertor significantly enhance detachment in the density ramp-up scenario by increasing the density of deuterium atoms, molecules, and ions near the target plate, thereby boosting the total radiation power. This effect lowers the density threshold required for detachment and reduces the peak current on the target plate. However, carbon impurities have a minimal impact on detachment achieved through neon injection, as they do not significantly alter the density of deuterium species or the total radiation power in this scenario.
    Furthermore, the study highlights the distinct roles of neutral particles in the two detachment mechanisms. In the density ramp-up scenario, the increased plasma density promotes the recycling process in the divertor, generating a substantial population of neutral particles. The energy and momentum losses resulting from plasma-neutral interactions are crucial for achieving detachment. In contrast, neon injection directly reduces the saturation current on the target plate, suppressing the recycling process and diminishing the importance of neutral particles.
    In conclusion, this work demonstrates that carbon impurities play a significant role in facilitating detachment during plasma density ramp-up but have limited influence on detachment via neon injection. The findings underscore the importance of considering multi-species particle dynamics, including neutral particles and impurities, in understanding and optimizing divertor detachment strategies. Future work will involve validating the SD1D model against experimental data from HL-3 to further refine its predictive capabilities.
  • [1]

    Stangeby, Peter C. The plasma boundary of magnetic fusion devices. CRC Press, 2000.

    [2]

    Kallenbach, A., Bernert, M., Dux, R., Reimold, F., Wischmeier, M., & ASDEX Upgrade Team. 2016. Plasma Physics and Controlled Fusion, 58(4), 045013.

    [3]

    Stangeby P C 2018. Plasma Physics and Controlled Fusion, 60(4):044022

    [4]

    Verhaegh, K., Lipschultz, B., Bowman, C., Duval, B.P., Fantz, U., Fil, A., Harrison, J.R., Moulton, D., Myatra, O., Wünderlich, D. and Federici, F., 2021. Plasma Physics and Controlled Fusion, 63(3), p.035018.

    [5]

    Kunze, H.J., 2009. 56, Springer Science & Business Media.

    [6]

    Bernert, M., Wischmeier, M., Huber, A., Reimold, F., Lipschultz, B., Lowry, C., Brezinsek, S., Dux, R., Eich, T., Kallenbach, A. and Lebschy, A., 2017.Nuclear Materials and Energy, 12, pp.111-118.

    [7]

    Ting, W.U., Lin, N.I.E., Yi, Y.U., Jinming, G.A.O., Junyan, L.I., Huicong, M.A., Jie, W.E.N., Rui, K.E., Na, W.U., Huang, Z. and Liang, L.I.U., 2022. Plasma Science and Technology, 25(1), p.015102.

    [8]

    Zhou, Y., Dudson, B., Militello, F., Verhaegh, K. and Myatra, O., 2022. Plasma Physics and Controlled Fusion, 64(6), p.065006.

    [9]

    Boedo, J., Gray, D., Chousal, L., Conn, R., Hiller, B. and Finken, K.H., 1998. Review of scientific instruments, 69(7), pp.2663-2670.

    [10]

    Boedo J A, Crocker N, Chousal L, Hernandez R, Chalfant J, Kugel H, Roney P, Wertenbaker J and NSTX Team 2009. Review of Scientific Instruments, 80(12):123506

    [11]

    Clark, J.G., Bowden, M.D. and Scannell, R., 2021. Low temperature. Review of Scientific Instruments, 92(4).

    [12]

    Makarov, S.O., Coster, D.P., Kaveeva, E.G., Rozhansky, V.A., Senichenkov, I.Y., Veselova, I.Y., Voskoboynikov, S.P., Stepanenko, A.A., Bonnin, X. and Pitts, R.A., 2023. Nuclear Fusion, 63(2), p.026014.

    [13]

    Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., Afanasev, V., Afzal, M., Ahlgren, T., Aho-Mantila, L. and Aiba, N., 2022. Nuclear Fusion, 62(4), p.042026.

    [14]

    Fil, A., Lipschultz, B., Moulton, D., Thornton, A., Dudson, B.D., Myatra, O., Verhaegh, K. and EUROfusion MST1 Team, 2022. Nuclear Fusion, 62(9), p.096026.

    [15]

    Myatra, O., Moulton, D., Dudson, B., Lipschultz, B., Newton, S., Verhaegh, K. and Fil, A., 2023. Nuclear Fusion, 63(7), p.076030.

    [16]

    Verhaegh, K., Lipschultz, B., Duval, B.P., Harrison, J.R., Reimerdes, H., Theiler, C., Labit, B., Maurizio, R., Marini, C., Nespoli, F. and Sheikh, U., 2017. Nuclear Materials and Energy, 12, pp.1112-1117.

    [17]

    Gao, J.M., Cai, L.Z., Cao, C.Z., Ma, H.C., Ke, R., Wu, N., Hu, Y., Gao, X.Y., Cui, C.H., Huang, Z.H. and Nie, L., 2023. Nuclear Fusion, 63(3), p.036006.

    [18]

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M, 2024. Acta Phys. Sin., 73(8): 088901 [龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏, 2024. 物理学报 73(8): 088901]

    [19]

    Wu, N., Cheng, J., Yi, K.Y., Wang, R., Han, M.K., Huang, Z.H., Wang, W.C., He, Y., Yan, L.W., Du, H.L. and Gao, J.M., 2024. Nuclear Fusion, 64(9), p.096007.

    [20]

    Liu, J.B., Wang, L., Guo, H.Y., Wang, H.Q., Xu, G.S., Ding, F., Xu, J.C., Liu, X.J., Yuan, Q.P., Wu, K. and Liu, S.C., 2019. Nuclear Fusion, 59(12), p.126046.

    [21]

    Dudson, B.D., Allen, J., Body, T., Chapman, B., Lau, C., Townley, L., Moulton, D., Harrison, J. and Lipschultz, B., 2019. Plasma Physics and Controlled Fusion, 61(6), p.065008.

    [22]

    Kallenbach, A., Bernert, M., Dux, R., Eich, T., Henderson, S.S., Pütterich, T., Reimold, F., Rohde, V., Sun, H.J. and ASDEX Upgrade Team, 2019.Nuclear Materials and Energy, 18, pp.166-174.

    [23]

    Zhou, Y., Dudson, B., Wu, T., Wang, Z., Xia, T., Zhong, C., Gao, J., Du, H. and Fan, D., 2024. Plasma Physics and Controlled Fusion, 66(5), p.055005.

  • [1] 娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇. Ga+离子4s2 1S0-4s4p3P0跃迁动态极化率的理论计算. 物理学报, doi: 10.7498/aps.74.20250125
    [2] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, doi: 10.7498/aps.73.20231749
    [3] 颜筱宇, 何小斐, 于利明, 刘亮, 陈伟, 石中兵, 卢杰, 魏会领, 韩纪锋, 张轶泼, 钟武律, 许敏. HL-2A装置上成像型中性粒子分析器的物理设计和初步实验结果. 物理学报, doi: 10.7498/aps.72.20230768
    [4] 沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如. 中国环流器2号A托卡马克弹丸注入放电中空电流与反磁剪切位形. 物理学报, doi: 10.7498/aps.70.20210641
    [5] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, doi: 10.7498/aps.69.20191449
    [6] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究. 物理学报, doi: 10.7498/aps.63.145204
    [7] 张新峰, 范士林, 贾凤东, 薛平, 许祥源, 钟志萍. 钪原子的自电离里德伯能级3d4s(1D2)nf2 D3/2,3d4s(1D2)nf2 F5/2和3d4s(1D2)np2 D3/2<. 物理学报, doi: 10.7498/aps.59.6036
    [8] 秦 猛, 田东平, 陶应娟. 自旋为1的三粒子Heisenberg XXX链中杂质对热纠缠的影响. 物理学报, doi: 10.7498/aps.57.5395
    [9] 姚良骅, 冯北滨, 陈程远, 冯 震, 李 伟, 焦一鸣. 中国环流器二号A(HL-2A)超声分子束注入最新结果. 物理学报, doi: 10.7498/aps.57.4159
    [10] 唐为华, 李培刚, L. H. Li, J. Gao. La2/3Ca1/3MnO3/Eu2CuO4/La2/3Ca1/3MnO3磁性隧道结的制备与表征. 物理学报, doi: 10.7498/aps.54.291
    [11] 杨百方, 缪竞威, 杨朝文, 师勉恭. H+5团簇离子及其中性团簇产物H3和H4. 物理学报, doi: 10.7498/aps.52.1901
    [12] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 物理学报, doi: 10.7498/aps.49.1256
    [13] 袁泽亮, 丁训民, 胡海天, 李哲深, 杨建树, 缪熙月, 陈溪滢, 曹先安, 侯晓远, 陆尔东, 徐世红, 徐彭寿, 张新夷. 中性(NH4)2S溶液钝化GaAs(100)表面的研究. 物理学报, doi: 10.7498/aps.47.68
    [14] 冉琴, 束继年, 裴林森, 陈从香, 俞书勤, 马兴孝, 吴国华, 盛六四, 张允武. (CH3I)n(n=1,2,3,4)的同步辐射光电离研究. 物理学报, doi: 10.7498/aps.46.1473
    [15] 张存洲, 张光寅, 俞平. 杂质对K2ZnCl4晶体无公度结构相变的影响. 物理学报, doi: 10.7498/aps.41.1087
    [16] 顾一鸣, 黄明竹, 汪克林. GaAs1-xPx中3d过渡金属杂质的电子结构. 物理学报, doi: 10.7498/aps.37.11
    [17] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, doi: 10.7498/aps.37.1236
    [18] 范希庆, 张德萱, 申三国. 3c-SiC中深杂质能级的A1,T2对称波函数. 物理学报, doi: 10.7498/aps.37.183
    [19] 顾一鸣, 黄明竹, 汪克林. 流体静压下AlAs合金化的GaAs中Cr2+(3d4)杂质态的理论研究. 物理学报, doi: 10.7498/aps.37.206
    [20] 车广灿, 唐棣生. Li3VO4-Li4SiO4-Li4GeO4赝三元系相图的研究. 物理学报, doi: 10.7498/aps.32.1061
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-01

/

返回文章
返回