搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子拓扑绝缘体多层系统中的Casimir效应

曾然 方世超 高泰吉 李浩珍 杨淑娜 羊亚平

引用本文:
Citation:

光子拓扑绝缘体多层系统中的Casimir效应

曾然, 方世超, 高泰吉, 李浩珍, 杨淑娜, 羊亚平
cstr: 32037.14.aps.74.20250088

Casimir effect in photonic topological insulator multilayered system

ZENG Ran, FANG Shichao, GAO Taiji, LI Haozhen, YANG Shuna, YANG Yaping
cstr: 32037.14.aps.74.20250088
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光子拓扑绝缘体为光子器件的设计和应用带来了新的可能性. 本文研究了基于时间反演对称性破缺的非互易光子拓扑绝缘体多层结构间的Casimir效应. 讨论该多层系统中Casimir排斥作用力的产生, 以及Casimir稳定平衡回复力的实现和调控, 并且着重分析了光子拓扑绝缘体光轴角度差对Casimir作用力的影响. 利用多层系统间的整体相对旋转可得到Casimir作用力的不同取向及其平衡点, 而系统内部各层间的光轴角度差对Casimir效应的影响趋势中存在拐点, 因此可利用多层系统中的旋转自由度来精细控制Casimir相互作用. 本文所提供的新的操控途径和操控自由度, 在实际微纳米系统中减小Casimir效应的不良影响或利用该效应开发其对系统的调控方面具有实际意义.
    The Casimir effect has received extensive attention theoretically and experimentally in recent years. It arises from the macroscopic manifestation of quantum vacuum fluctuations, and this Casimir interaction force can be an effective means of driving and controlling components in micro-electro-mechanical system (MEMS) and nano-electromechanical system (NEMS). Due to the new possibilities provided by photonic topological insulator for designing and using photonic devices, in this work, the Casimir force between the multilayer structures of non-reciprocal photonic topological insulators with broken time-reversal symmetry is investigated, and the influences of the dielectric tensor of the photonic topological insulator, the spatial structural parameters of the multilayer system, and the rotational degree of freedom on the Casimir force are examined. It is found that there exists Casimir repulsive force in such a multilayer system, and the Casimir stable equilibrium and restoring force can be further realized and controlled. Continuous variation between anti-mirror-symmetric configuration and mirror-symmetric configuration is examined. Both the Casimir attraction and repulsion can be generally enhanced through structural optimization by increasing layer number and individual layer thickness. Furthermore, we focus on the detailed analysis of how the optical axis angle difference within the photonic topological insulator layers can be used to adjust the Casimir force. The overall relative rotation of the multilayer system may adjust the magnitude and the direction of the Casimir force, and some inflection points can be found from the influence curve of the optical axis angle difference between internal layers of the multilayer on the Casimir force, allowing the rotational degrees of freedom in the multilayer system to be used for fine-adjusting the Casimir interaction. This work introduces the enhanced degrees of freedom for probing and manipulating the interaction between small objects in micro/nano systems, thereby suppressing adverse Casimir forces and effectively using them.
      通信作者: 曾然, ranzeng@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 12274326, 62475064)、浙江省自然科学基金(批准号: LY21A040003)、中国博士后科学基金 (批准号: 2023M732028)和量子技术与器件浙江省重点实验室(批准号: 20230201)资助的课题.
      Corresponding author: ZENG Ran, ranzeng@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 12274326, 62475064), the Natural Science Foundation of Zhejiang Province, China (Grants No. LY21A040003), the China Postdoctoral Science Foundation (Grant No. 2023M732028), and the Fund from Key Laboratory of Quantum Technology and Device of Zhejiang Province, China (Grant No. 20230201).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [4]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [5]

    Luo W, Qi X L 2013 Phys. Rev. B 87 085431Google Scholar

    [6]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 Innovation 2 100098Google Scholar

    [7]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 73 064201Google Scholar

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201Google Scholar

    [10]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [11]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [12]

    Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021 J. Lightwave Technol. 39 7609Google Scholar

    [13]

    Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021 Nat. Commun. 12 1974Google Scholar

    [14]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [15]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [16]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [17]

    Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022 Nature 609 931Google Scholar

    [18]

    Teo H T, Xue H R, Zhang B L 2022 Phys. Rev. A 105 053510Google Scholar

    [19]

    Devi K M, Jana S, Chowdhury D R 2021 Opt. Mater. Express 11 2445Google Scholar

    [20]

    Casimir H B G 1948 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793

    [21]

    Palasantzas G, Sedighi M, Svetovoy V B 2020 Appl. Phys. Lett. 117 120501Google Scholar

    [22]

    Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021 Nanoscale 13 6475Google Scholar

    [23]

    周帅, 柳开鹏, 戴士为, 葛力新 2025 物理学报 74 014202Google Scholar

    Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202Google Scholar

    [24]

    Zeng R, Wang C, Zeng X D, Li H Z, Yang S N, Li Q L, Yang Y P 2020 Opt. Express 28 7425Google Scholar

    [25]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024 Sci. Adv. 10 eadn1825Google Scholar

    [26]

    Grushin A G, Cortijo A 2011 Phys. Rev. Lett. 106 020403Google Scholar

    [27]

    Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017 Phys. Rev. A 96 062505Google Scholar

    [28]

    Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018 Phys. Rev. B 98 144101Google Scholar

    [29]

    Masyukov M S, Grebenchukov A N 2021 Phys. Rev. B 104 165308Google Scholar

    [30]

    Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013 J. Opt. 15 114003Google Scholar

    [31]

    Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016 Phys. Lett. A 380 2861Google Scholar

    [32]

    Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724Google Scholar

    [33]

    Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024 J. Opt. 26 075602Google Scholar

    [34]

    Kenneth O, Klich I 2006 Phys. Rev. Lett. 97 160401Google Scholar

    [35]

    Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar

    [36]

    Xu J, He P P, Feng D L, Luo Y M, Fan S Q, Yong K L, Tsakmakidis K L 2023 Opt. Express 31 42388Google Scholar

    [37]

    Holmes A M, Sabbaghi M, Hanson G W 2021 Phys. Rev. B 104 214433Google Scholar

    [38]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (Springer: New York

    [39]

    Silveirinha M G, Terças H, Antezza M 2023 Phys. Rev. B 108 235154Google Scholar

  • 图 1  光子拓扑绝缘体多层结构间Casimir效应示意图, 其中左右多层结构间距L, 左右侧结构相应的参考系分别对应为x-y-zx'-y'-z坐标系, 红色箭头表示光子拓扑绝缘体的x(x')方向光轴 (a) 两侧结构的该光轴反平行; (b) 两侧结构该光轴的夹角为$\theta $; (c) 系统内部各层相互间也存在光轴夹角

    Fig. 1.  Sketch of the Casimir effect between multilayered structures made of photonic topological insulators, where L is the separation between two structures, x-y-z and x'-y'-z are the coordinates in the left and right structures, respectively. The red arrows indicate the x(x') optical axes of photonic topological insulators: (a) Anti-parallel on the two sides, (b) an angle $\theta $ between the two sides; (c) exist angles between layers within the system.

    图 2  反镜像对称的两个N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值随结构间距L的变化

    Fig. 2.  Relative Casimir force between two N-layer photonic topological insulator structures (N = 1, 2, 3) with inversion-mirror symmetry as a function of the separation L.

    图 3  反镜像对称N层光子拓扑绝缘体结构间 (a) Casimir平衡回复力; (b) Casimir力随${\varepsilon _n}$的变化曲线

    Fig. 3.  Within the anti-mirror symmetric N-layer photonic topological insulator structure: (a) The restoring Casimir force; (b) the Casimir force as a function of ${\varepsilon _n}$.

    图 4  反镜像对称N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值随单元层厚度的变化, 其中结构间距L = 1.0λ, 其他系统参数同图2中的取值

    Fig. 4.  Relative Casimir force between two N-layer photonic topological insulator structures (N = 1, 2, 3) with inversion-mirror symmetry as a function of the layer thickness, where L = 1.0λ and other parameters are the same as in Fig. 2.

    图 5  N层光子拓扑绝缘体结构(N = 1, 2, 3)间的Casimir作用力相对幅值 (a)在镜像对称情况下随间距L的变化; (b)随光轴夹角$\theta $的变化

    Fig. 5.  (a) Relative amplitude of Casimir force between N-layer photonic topological insulator structures (N = 1, 2, 3): (a) Variation with the separation L with mirror symmetry; (b) variation with the $\theta $.

    图 6  锑化铟三层系统间Casimir作用力相对幅值在不同 内部层间光轴夹角下随整体旋转角度$\theta $的变化, 其中相 关参数为${\omega _{\text{L}}} = 3.62 \times {10^{13}} {\text{ rad/s}}$, ${\omega _{\text{T}}} = 3.39 \times {10^{13}} {\text{ rad/s}}$, $\varGamma = 5.65 \times {10^{11}} {\text{ rad/s}}$, $\gamma = 3.39 \times {10^{12}} {\text{ rad/s}}$, $N = 1.07 \times $$ {10^{17}}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$, B = 10 T, 其他参数同图4中的取值

    Fig. 6.  Relative Casimir force between the three-layer InSb systems as a function of the overall rotation angle $\theta $ under different optical axis angles between internal layers, where ${\omega _{\text{L}}} = 3.62 \times {10^{13}}\; {\text{rad/s}}$, ${\omega _{\text{T}}} = 3.39 \times {10^{13}} {\text{ rad/s}}$, $\varGamma = 5.65 \times $$ {10^{11}} {\text{ rad/s}}$, $\gamma = 3.39 \times {10^{12}} {\text{ rad/s}}$, $N = 1.07 \times {10^{17}}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$, B = 10 T, and other parameters are the same as in Fig. 4.

    图 7  锑化铟三层系统间Casimir力相对幅值随$\phi $角的变化, 其中B = 20 T, 其他各参数同图6

    Fig. 7.  Relative Casimir force between the three-layer InSb systems as a function of $\phi $, where B = 20 T and other parameters are the same as in Fig. 6.

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [4]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [5]

    Luo W, Qi X L 2013 Phys. Rev. B 87 085431Google Scholar

    [6]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 Innovation 2 100098Google Scholar

    [7]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 73 064201Google Scholar

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201Google Scholar

    [10]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [11]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [12]

    Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021 J. Lightwave Technol. 39 7609Google Scholar

    [13]

    Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021 Nat. Commun. 12 1974Google Scholar

    [14]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021 Phys. Rev. Lett. 126 230503Google Scholar

    [15]

    Dai T X, Ao Y T, Bao J M, Mao J, Chi Y L, Fu Z R, You Y L, Chen X J, Zhai C H, Tang B, Yang Y, Li Z H, Yuan L Q, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X Y, Gong Q H, Wang J W 2022 Nat. Photonics 16 248Google Scholar

    [16]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [17]

    Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022 Nature 609 931Google Scholar

    [18]

    Teo H T, Xue H R, Zhang B L 2022 Phys. Rev. A 105 053510Google Scholar

    [19]

    Devi K M, Jana S, Chowdhury D R 2021 Opt. Mater. Express 11 2445Google Scholar

    [20]

    Casimir H B G 1948 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793

    [21]

    Palasantzas G, Sedighi M, Svetovoy V B 2020 Appl. Phys. Lett. 117 120501Google Scholar

    [22]

    Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021 Nanoscale 13 6475Google Scholar

    [23]

    周帅, 柳开鹏, 戴士为, 葛力新 2025 物理学报 74 014202Google Scholar

    Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202Google Scholar

    [24]

    Zeng R, Wang C, Zeng X D, Li H Z, Yang S N, Li Q L, Yang Y P 2020 Opt. Express 28 7425Google Scholar

    [25]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024 Sci. Adv. 10 eadn1825Google Scholar

    [26]

    Grushin A G, Cortijo A 2011 Phys. Rev. Lett. 106 020403Google Scholar

    [27]

    Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017 Phys. Rev. A 96 062505Google Scholar

    [28]

    Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018 Phys. Rev. B 98 144101Google Scholar

    [29]

    Masyukov M S, Grebenchukov A N 2021 Phys. Rev. B 104 165308Google Scholar

    [30]

    Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013 J. Opt. 15 114003Google Scholar

    [31]

    Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016 Phys. Lett. A 380 2861Google Scholar

    [32]

    Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724Google Scholar

    [33]

    Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024 J. Opt. 26 075602Google Scholar

    [34]

    Kenneth O, Klich I 2006 Phys. Rev. Lett. 97 160401Google Scholar

    [35]

    Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar

    [36]

    Xu J, He P P, Feng D L, Luo Y M, Fan S Q, Yong K L, Tsakmakidis K L 2023 Opt. Express 31 42388Google Scholar

    [37]

    Holmes A M, Sabbaghi M, Hanson G W 2021 Phys. Rev. B 104 214433Google Scholar

    [38]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (Springer: New York

    [39]

    Silveirinha M G, Terças H, Antezza M 2023 Phys. Rev. B 108 235154Google Scholar

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] 周帅, 柳开鹏, 戴士为, 葛力新. 双液体系统中的可调控Casimir平衡点. 物理学报, 2025, 74(1): 014202. doi: 10.7498/aps.74.20241126
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [5] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [6] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [7] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [8] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [9] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应. 物理学报, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [10] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [11] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [12] 田文超, 王林滨, 贾建援. Casimir力、Hamaker力及黏附“突跳”研究. 物理学报, 2010, 59(2): 1175-1179. doi: 10.7498/aps.59.1175
    [13] 曾 然, 羊亚平, 刘树田. 负折射率材料对产生Casimir排斥力的影响. 物理学报, 2008, 57(8): 4947-4952. doi: 10.7498/aps.57.4947
    [14] 刘成周, 张昌平. 二维静态时空中Dirac场的重正化能动张量和Casimir效应. 物理学报, 2007, 56(4): 1928-1937. doi: 10.7498/aps.56.1928
    [15] 曾 然, 许静平, 羊亚平, 刘树田. 负折射率材料对Casimir效应的影响. 物理学报, 2007, 56(11): 6446-6450. doi: 10.7498/aps.56.6446
    [16] 白占武. 非平行导线型边界下Maxwell-Chern-Simons场的Casimir效应. 物理学报, 2004, 53(8): 2472-2477. doi: 10.7498/aps.53.2472
    [17] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [18] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
    [19] 史新, 李新洲. 立体欠缺角和排斥力. 物理学报, 1991, 40(3): 353-358. doi: 10.7498/aps.40.353
    [20] 薛社生, 冼鼎昌. 规范协变理论中的Casimir效应. 物理学报, 1985, 34(8): 1084-1087. doi: 10.7498/aps.34.1084
计量
  • 文章访问数:  339
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-19
  • 修回日期:  2025-03-12
  • 上网日期:  2025-03-17

/

返回文章
返回