搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络辅助无机晶体弹性性质预测

刘宇杰 王振宇 雷航 张国宇 咸家伟 高志斌 孙军 宋海峰 丁向东

引用本文:
Citation:

卷积神经网络辅助无机晶体弹性性质预测

刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东
cstr: 32037.14.aps.74.20250127

Machine learning-driven elasticity prediction in advanced inorganic materials via convolutional neural networks

LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong
cstr: 32037.14.aps.74.20250127
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 无机晶体材料因具有优异的物理和化学特性, 在多个领域展现出广泛的应用潜力. 弹性性质(如体积模量和剪切模量)对预测材料的电导率、热导率及力学性能具有重要作用, 然而, 传统实验测量方法存在成本高、周期长等问题. 随着计算方法的进步, 理论模拟逐渐成为独立于实验的研究方法. 近年来, 基于图神经网络的机器学习方法在无机晶体材料的弹性性质预测中取得了显著成果, 尤其是晶体图卷积神经网络(CGCNN)在材料数据的预测和扩展方面表现出色. 本研究利用从Matbench v0.1数据集中收集的10987个材料的体积模量和剪切模量数据, 训练了两个CGCNN模型, 基于预训练的模型成功实现了对80664个无机晶体结构弹性模量的预测. 为保证数据质量, 筛选了材料电子带隙在0.1—3.0 eV之间, 并去除了含有放射性元素的化合物. 预测数据来源于两个主要数据集: 一是从Materials Project数据库中筛选出的54359个晶体结构, 构成MPED弹性数据集; 二是Merchant等(2023 Nature 624 80)通过深度学习和图神经网络方法发现的26305种晶体结构, 构成NED弹性数据集. 最终, 本研究预测了80664种无机晶体的体积模量和剪切模量, 丰富了现有的材料弹性数据资源, 并为材料设计提供了更多的数据支持. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00104中访问获取.
    Inorganic crystal materials have shown extensive application potential in many fields due to their excellent physical and chemical properties. Elastic properties, such as shear modulus and bulk modulus, play an important role in predicting the electrical conductivity, thermal conductivity and mechanical properties of materials. However, the traditional experimental measurement method has some problems such as high cost and low efficiency. With the development of computational methods, theoretical simulation has gradually become an effective alternative to experiments. In recent years, graph neural network-based machine learning methods have achieved remarkable results in predicting the elastic properties of inorganic crystal materials, especially, crystal graph convolutional neural networks (CGCNNs), which perform well in the prediction and expansion of material data.In this study, two CGCNN models are trained by using the shear modulus and bulk modulus data of 10987 materials collected in the Matbench v0.1 dataset. These models show high accuracy and good generalization ability in predicting shear modulus and bulk modulus. The mean absolute error (MAE) is less than 13 and the coefficient of determination ($ R^2$) is close to 1. Then, two datasets are screened for materials with a band gap between 0.1 and 3.0 eV and the compounds containing radioactive elements are excluded. The dataset consists of two parts: the first part is composed of 54359 crystal structures selected from the Materials Project database, which constitute the MPED dataset; the second part is the 26305 crystal structures discovered by Merchant et al. (2023 Nature 624 80) through deep learning and graph neural network methods, which constitute the NED dataset. Finally, the shear modulus and bulk modulus of 80664 inorganic crystals are predicted in this study This work enriches the existing material elastic data resources and provides more data support for material design. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00104.
      通信作者: 咸家伟, xian_jiawei@iapcm.ac.cn ; 高志斌, zhibin.gao@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104356, 52250191)、计算物理全国重点实验室基金和国家重点研发计划(批准号: 2023YFB4604100) 资助的课题.
      Corresponding author: XIAN Jiawei, xian_jiawei@iapcm.ac.cn ; GAO Zhibin, zhibin.gao@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104356, 52250191), the Funding of National Key Laboratory of Computational Physics, China, and the National Key Research and Development Program of China (Grant No. 2023YFB4604100).
    [1]

    Koester S J, Schaub J D, Dehlinger G, Chu J O 2006 IEEE J. Sel. Top. Quantum Electron. 12 1489Google Scholar

    [2]

    Seo D, Gregory J, Feldman L, Tolk N, Cohen P 2011 Phys. Rev. B 83 195203Google Scholar

    [3]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [4]

    Sanchez C, Lebeau B, Chaput F, Boilot J P 2003 Adv. Mater. 15 1969Google Scholar

    [5]

    Beekman M, Cahill D G 2017 Cryst. Res. Technol. 52 1700114Google Scholar

    [6]

    Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059Google Scholar

    [7]

    Reddy C M, Krishna G R, Ghosh S 2010 CrystEngComm 12 2296Google Scholar

    [8]

    Keyes R W 1968 Solid State Physics. 20 37

    [9]

    Wang X, Shu G, Zhu G, Wang J S, Sun J, Ding X, Li B, Gao Z 2024 Mater. Today Phys. 48 101549Google Scholar

    [10]

    Chen L, Tran H, Batra R, Kim C, Ramprasad R 2019 Comput. Mater. Sci. 170 109155Google Scholar

    [11]

    Lake G J, Thomas A G 1967 Proc. R. Soc. London, Ser. A 300 108

    [12]

    Pugh S 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [13]

    Niu H, Chen X Q, Liu P, Xing W, Cheng X, Li D, Li Y 2012 Sci. Rep. 2 718Google Scholar

    [14]

    Gschneidner Jr K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Chester Lo C, Ye Y, Slager A, Kesse D 2003 Nat. Mater. 2 587Google Scholar

    [15]

    Greaves G N, Greer A L, Lakes R S, Rouxel T 2011 Nat. Mater. 10 823Google Scholar

    [16]

    de Jong M, Olmsted D L, van de Walle A, Asta M 2012 Phys. Rev. B 86 224101Google Scholar

    [17]

    de Jong M, van der Zwaag S, Sluiter M 2012 Int. J. Mater. Res. 103 972Google Scholar

    [18]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [19]

    Wang J, Yang X, Zeng Z, Zhang X, Zhao X, Wang Z 2017 Comput. Mater. Sci. 138 135Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Grigoras S, Gusev A, Santos S, Suter U 2002 Polymer 43 489Google Scholar

    [22]

    Belytschko T, Black T 1999 Int. J. Numer. Methods Eng. 45 601Google Scholar

    [23]

    Zhao Y, Yuan K, Liu Y, Louis S Y, Hu M, Hu J 2020 J. Phys. Chem. C 124 17262Google Scholar

    [24]

    Chibani S, Coudert F X 2020 APL Mater. 8 080701Google Scholar

    [25]

    Chew A K, Sender M, Kaplan Z, Chandrasekaran A, Chief Elk J, Browning A R, Kwak H S, Halls M D, Afzal M A F 2024 J. Cheminform. 16 31Google Scholar

    [26]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [27]

    Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D, Barati Farimani A 2020 Phys. Rev. Mater. 4 093801Google Scholar

    [28]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185Google Scholar

    [29]

    Louis S Y, Zhao Y, Nasiri A, Wang X, Song Y, Liu F, Hu J 2020 Phys. Chem. Chem. Phys. 22 18141Google Scholar

    [30]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digital Discovery 3 594Google Scholar

    [31]

    Omee S S, Fu N, Dong R, Hu M, Hu J 2024 npj Comput. Mater. 10 144Google Scholar

    [32]

    de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande C K, van der Zwaag S, Plata J J 2015 Sci. Data 2 150009Google Scholar

    [33]

    Jain A, Ong S P, Hautier G, et al. 2013 APL Mater. 1 011002Google Scholar

    [34]

    Curtarolo S, Setyawan W, Hart G L, et al. 2012 Comput. Mater. Sci. 58 218Google Scholar

    [35]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [36]

    Atomly 2025 https://atomly.net Accessed: 2025-01-13

    [37]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6 138Google Scholar

    [38]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80Google Scholar

    [39]

    Shuai C, Liu W, Li H, Wang K, Zhang Y, Xie T, Chen L, Hou H, Zhao Y 2023 Int. J. Plast. 170 103772Google Scholar

    [40]

    Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95 155206Google Scholar

    [41]

    Qin G, Huang A, Liu Y, Wang H, Qin Z, Jiang X, Zhao J, Hu J, Hu M 2022 Mater. Adv. 3 6826Google Scholar

    [42]

    Belomestnykh V N, Tesleva E P 2004 Tech. phys. 49 1098Google Scholar

    [43]

    Belomestnykh V N 2004 Tech. Phys. Lett. 30 91Google Scholar

    [44]

    Toher C, Oses C, Plata J J, Hicks D, Rose F, Levy O, de Jong M, Asta M, Fornari M, Buongiorno Nardelli M, Curtarolo S 2017 Phys. Rev. Mater. 1 015401Google Scholar

    [45]

    Wang H, Duan Z, Guo Q, Zhang Y, Zhao Y 2023 CMC-Comput. Mater. Continua 77 1393Google Scholar

  • 图 1  晶体图卷积神经网络 (a)晶体图的构造: 晶体结构被转换为图形, 其中节点代表单位原胞中的原子, 边缘则表示原子之间的连接. 每个节点和边都用对应于晶体中原子和化学键的向量进行表征; (b)晶体图顶部的卷积神经网络结构: 在每个节点上构建R个卷积层和$ L_1$个隐藏层, 从而形成一个新的图, 其中每个节点表示该原子的局部环境. 经过池化操作后, 将代表整个晶体的向量连接到$ L_2$隐藏层, 然后连接到输出层, 以进行预测[26]

    Fig. 1.  Illustration of the crystal graph convolutional neural networks: (a) Construction of the crystal graph. Crystals are converted to graphs with nodes representing atoms in the unit cell and edges representing atom connections. Nodes and edges are characterized by vectors corresponding to the atoms and bonds in the crystal, respectively. (b) Structure of the convolutional neural network on top of the crystal graph. R convolutional layers and $ L_1$ hidden layers are built on top of each node, resulting in a new graph with each node representing the local environment of each atom. After pooling, a vector representing the entire crystal is connected to $ L_2$ hidden layers, followed by the output layer to provide the prediction[26].

    图 2  剪切模量((a), (b))和体模量((c), (d))的训练集(Train)、验证集(Val)和测试集(Test)在晶体图卷积神经网络(CGCNN)、随机森林(random forest)、极限梯度提升(XGBoost)、支持向量回归(SVR)、梯度提升(gradient boosting)和决策树(decision tree)的平均绝对误差(MAE)和决定系数(R2)

    Fig. 2.  Mean absolute error (MAE) and coefficient of determination (R2) for the training set (Train), validation set (Val), and test set (Test) of shear modulus ((a), (b)) and bulk modulus ((c), (d)) in crystal graph convolutional neural network (CGCNN), random forest (RF), extreme gradient boosting (XGBoost), support vector regression (SVR), gradient boosting (GB), and decision tree (DT).

    图 3  利用CGCNN模型所预测的体积模量与剪切模量结果与DFT计算值对比分析 (a)和(b), (c)和(d)以及(e)和(f)分别为在训练集、验证集和测试集的结果

    Fig. 3.  Comparison between the volume modulus and shear modulus predicted by CGCNN model and the calculated values of DFT. (a) and (b), (c) and (d), (e) and (f) are the results in the train set, validation set, and test set, respectively.

    图 4  来自MPED数据集的预测数据集的统计分析 (a) 7种晶系分布, 单斜晶系最常见(16101个结构), 其次是三斜晶系(14461个结构), 最少的是六方晶系(1361个结构); (b)数据集原胞中的原子数范围(1—444个原子)的分布; (c)元素分布, 显示了77种不同元素的出现频率. 该数据集包括过渡金属、主族元素和稀土元素, 其中氧的出现频率最高

    Fig. 4.  Statistical analysis of predictive datasets from MPED: (a) The distribution of 7 crystal systems, with monoclinic being the most common (16101 structures), followed by triclinic (14461 structures), while hexagonal is the least one (1361 structures); (b) distribution of range of number of atoms in the primitive cell (1–444 atoms) across the dataset; (c) elemental distribution that illustrates the frequency of 77 distinct elements. The dataset encompasses transition metals, main group elements, and rare earth elements, with oxygen showing the highest frequency.

    图 5  来自NED数据集所预测数据集的统计分析 (a) 7种晶系分布, 单斜晶系最常见(8063个结构), 其次是三斜晶系(7491个结构), 最少的是六方晶系(779个结构); (b)数据集原胞内原子数范围(3—84个原子)的分布; (c)元素分布, 显示了76种不同元素的出现频率. 该数据集包括过渡金属、主族元素和稀土元素, 其中氧的出现频率最高

    Fig. 5.  Statistical analysis of predictive datasets from NED: (a) The distribution of 7 crystal systems, with monoclinic being the most common (8063 structures), followed by triclinic (7491 structures), while hexagonal is the least one (779 structures); (b) distribution of the range of the number of atoms in the primitive cell (3–84 atoms) across the dataset; (c) elemental distribution illustrating the frequency of 76 distinct elements. The dataset encompasses transition metals, main group elements, and rare earth elements, with oxygen showing the highest frequency.

    图 6  MPED数据集中不同材料的剪切模量与体模量分布 (a)所有材料的剪切模量与体模量分布, 不同颜色代表不同的晶系; (b)三斜晶系; (c)单斜晶系; (d)正交晶系; (e)三方晶系; (f)四方晶系; (g)六方晶系; (h)立方晶系. 条形图展示了各晶系材料的剪切模量和体模量的统计分布

    Fig. 6.  Shear modulus and bulk modulus distributions of different materials in the MPED dataset: (a) Shear modulus vs. bulk modulus distributions for all materials, with different colors representing different crystal systems; (b) triclinic; (c) monoclinic; (d) orthorhombic; (e) trigonal; (f) tetragonal; (g) hexagonal; (h) cubic. The bar graphs show the statistical distribution of shear and bulk moduli for each crystal system material.

    图 7  NED数据集中各晶体结构材料的模量分布 (a)整体剪切模量-体模量分布(颜色区分晶系); (b)三斜晶系; (c)单斜晶系; (d) 正交晶系; (e)三方晶系; (f)四方晶系; (g)六方晶系; (h)立方晶系. 条形图统计了各晶系材料的剪切模量和体模量分布

    Fig. 7.  Distribution of moduli for various crystal structure materials in the NED dataset: (a) Overall shear modulus-bulk modulus distribution (color-coded by crystal system); (b) triclinic system; (c) monoclinic system; (d) orthorhombic system; (e) trigonal system; (f) tetragonal system; (g) hexagonal system; (h) cubic system. Bar charts illustrate the distribution of shear modulus and bulk modulus for materials in each crystal system.

    表 A1  MPED数据集无机晶体材料基础物理特性及预测值(部分). 这里, ID-number和Formula分别是材料编号和化学式

    Table A1.  Fundamental physical properties (partial) and predicted values of inorganic crystalline materials from MPED datasets. The CIF files of these materials were obtained from the Materials Project. Here, ID-number and Formula represent the material ID and chemical formula, respectively.

    ID-number Formula N ρ V M B G $ \upsilon_{\rm{l}} $ $ \upsilon_{\rm{t}} $ $ \upsilon_{\rm{s}} $ ν $ \theta_{\rm{D}} $
    mp-1000 BaTe 2 4.938 89.094 264.927 31.764 23.469 2180.121 3573.541 2407.744 0.204 160.498
    mp-10009 GaTe 8 5.1549 254.251 789.292 24.095 16.757 1802.955 3001.379 1994.276 0.218 93.722
    mp-1001012 Sc2ZnSe4 14 3.254 289.440 567.162 53.623 32.397 3155.374 5454.806 3502.473 0.249 157.640
    mp-1001015 Y2ZnS4 14 3.675 335.691 742.961 60.652 25.843 2651.771 5087.157 2967.069 0.314 127.104
    mp-1001016 Sc2ZnSe4 14 4.687 333.879 942.322 54.940 22.543 2193.172 4258.659 2455.876 0.320 105.395
    mp-1001019 MgSc2Se4 14 4.086 349.578 860.114 52.875 22.985 2371.850 4521.352 2652.741 0.310 112.113
    mp-1001021 Y2ZnSe4 14 4.811 385.950 1118.121 55.070 22.939 2183.662 4219.640 2444.462 0.317 99.958
    mp-1001023 BeC2 6 1.879 58.402 66.067 132.395 102.494 7386.608 11967.830 8148.016 0.192 625.248
    mp-1001024 Y2MgS4 14 3.173 345.765 660.753 56.994 26.037 2864.435 5375.943 3200.229 0.302 135.747
    mp-1001034 MgIn2Se4 14 5.031 376.146 1139.562 39.515 21.476 2066.136 3680.578 2299.251 0.270 94.830
    mp-1001069 Li48P16S61 125 1.743 2652.952 2784.713 19.812 7.267 2041.845 4114.028 2291.557 0.337 49.283
    mp-1001079 LiC2N2 10 1.505 130.116 117.952 56.823 20.405 3681.742 7471.454 4133.696 0.340 242.869
    mp-10013 SnS 2 3.596 69.620 150.775 17.613 5.617 1249.772 2642.016 1406.249 0.356 101.772
    mp-1001594 C4O3 84 1.656 1155.735 1152.492 19.101 12.904 2791.530 4682.464 3090.023 0.224 87.663
    mp-1001604 LuTlS2 4 7.377 99.825 443.480 49.490 20.396 1662.754 3224.127 1861.754 0.319 119.486
    mp-1001611 LuTlSe2 4 8.001 111.508 537.270 43.737 22.793 1687.844 3043.848 1880.122 0.278 116.295
    mp-1001780 LuCuS2 4 6.522 77.056 302.643 74.239 35.316 2327.021 4313.132 2597.493 0.295 181.731
    mp-1001786 LiScS2 4 2.700 71.362 116.027 58.972 36.372 3670.409 6309.130 4072.100 0.244 292.285
    mp-1001790 LiO3 4 2.130 42.828 54.939 46.463 28.415 3652.317 6292.720 4052.874 0.246 344.878
    mp-1001831 LiB 4 2.099 28.090 35.504 111.075 134.490 8004.910 11762.661 8727.079 0.069 854.731
    下载: 导出CSV

    表 A2  NED数据集无机晶体材料基础物理特性及预测值(部分). 这里, Filename表示文件名

    Table A2.  Basic physical properties and predicted values of inorganic crystalline materials (part) from NED datasets. Here, Filename represents the file name.

    Filename N ρ V M G B $ \upsilon_\mathrm{l} $ $ \upsilon_\mathrm{t} $ $ \upsilon_\mathrm{s} $ ν $ \theta_\mathrm{D} $
    FIrS 3 7.798 51.805 243.280 28.413 54.027 3433.128 1908.824 2125.825 0.276 244.862
    AuGeP 3 7.381 67.619 300.580 23.064 55.970 3427.627 1767.655 1979.213 0.319 208.603
    GdHO 3 7.384 39.190 174.257 62.945 113.409 5169.778 2919.774 3247.588 0.266 410.537
    LiPrPtSn 4 9.285 82.565 461.643 31.112 78.216 3590.578 1830.554 2051.127 0.324 222.617
    ErLiPdSn 4 8.792 75.424 399.330 36.874 81.235 3851.257 2047.962 2288.361 0.303 255.968
    BaBiHgNa 4 6.817 138.827 569.887 11.187 24.989 2419.500 1281.048 1431.855 0.305 130.688
    BeGeHLa 4 5.801 63.421 221.566 49.688 90.981 5206.069 2926.621 3256.448 0.269 385.920
    AlHKSb 4 3.004 104.402 188.848 14.352 23.461 3765.877 2185.915 2425.631 0.246 243.454
    EuHgNaSb 4 7.135 115.739 497.304 15.654 30.762 2690.122 1481.228 1650.873 0.282 160.097
    LiNiSmSn 4 7.617 72.963 334.704 36.441 70.798 3958.873 2187.199 2437.061 0.280 275.632
    DyLiPdSn 4 8.557 76.573 394.571 35.786 81.074 3879.627 2045.067 2286.509 0.308 254.475
    N2SSe2 5 2.175 166.436 217.998 2.459 2.521 1632.981 1063.352 1165.878 0.132 107.904
    LiNaSe2Zn 5 3.916 107.396 253.260 17.754 31.924 3767.961 2129.286 2368.236 0.265 253.647
    BrGeLa2Rh 5 6.436 137.585 533.260 27.302 50.532 3675.249 2059.620 2292.318 0.271 226.057
    CsHgNaS2 5 4.774 146.289 420.615 9.852 18.449 2572.057 1436.510 1599.245 0.273 154.518
    AlAs2CsMg 5 3.863 143.606 334.035 20.025 28.181 3769.434 2276.944 2517.185 0.213 244.713
    Br2GeSmY 5 4.803 163.091 471.714 19.469 32.496 3488.675 2013.383 2235.315 0.250 208.287
    As2Ca2Sr 5 3.392 155.481 317.619 28.093 37.392 4697.360 2877.774 3176.871 0.200 300.774
    KLiMnTe2 5 3.860 153.218 356.177 12.890 26.438 3361.705 1827.331 2038.601 0.290 193.953
    Al2C2Yb 5 6.426 64.862 251.024 88.642 125.838 6162.150 3713.927 4106.697 0.215 520.350
    下载: 导出CSV
  • [1]

    Koester S J, Schaub J D, Dehlinger G, Chu J O 2006 IEEE J. Sel. Top. Quantum Electron. 12 1489Google Scholar

    [2]

    Seo D, Gregory J, Feldman L, Tolk N, Cohen P 2011 Phys. Rev. B 83 195203Google Scholar

    [3]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [4]

    Sanchez C, Lebeau B, Chaput F, Boilot J P 2003 Adv. Mater. 15 1969Google Scholar

    [5]

    Beekman M, Cahill D G 2017 Cryst. Res. Technol. 52 1700114Google Scholar

    [6]

    Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059Google Scholar

    [7]

    Reddy C M, Krishna G R, Ghosh S 2010 CrystEngComm 12 2296Google Scholar

    [8]

    Keyes R W 1968 Solid State Physics. 20 37

    [9]

    Wang X, Shu G, Zhu G, Wang J S, Sun J, Ding X, Li B, Gao Z 2024 Mater. Today Phys. 48 101549Google Scholar

    [10]

    Chen L, Tran H, Batra R, Kim C, Ramprasad R 2019 Comput. Mater. Sci. 170 109155Google Scholar

    [11]

    Lake G J, Thomas A G 1967 Proc. R. Soc. London, Ser. A 300 108

    [12]

    Pugh S 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [13]

    Niu H, Chen X Q, Liu P, Xing W, Cheng X, Li D, Li Y 2012 Sci. Rep. 2 718Google Scholar

    [14]

    Gschneidner Jr K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Chester Lo C, Ye Y, Slager A, Kesse D 2003 Nat. Mater. 2 587Google Scholar

    [15]

    Greaves G N, Greer A L, Lakes R S, Rouxel T 2011 Nat. Mater. 10 823Google Scholar

    [16]

    de Jong M, Olmsted D L, van de Walle A, Asta M 2012 Phys. Rev. B 86 224101Google Scholar

    [17]

    de Jong M, van der Zwaag S, Sluiter M 2012 Int. J. Mater. Res. 103 972Google Scholar

    [18]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [19]

    Wang J, Yang X, Zeng Z, Zhang X, Zhao X, Wang Z 2017 Comput. Mater. Sci. 138 135Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Grigoras S, Gusev A, Santos S, Suter U 2002 Polymer 43 489Google Scholar

    [22]

    Belytschko T, Black T 1999 Int. J. Numer. Methods Eng. 45 601Google Scholar

    [23]

    Zhao Y, Yuan K, Liu Y, Louis S Y, Hu M, Hu J 2020 J. Phys. Chem. C 124 17262Google Scholar

    [24]

    Chibani S, Coudert F X 2020 APL Mater. 8 080701Google Scholar

    [25]

    Chew A K, Sender M, Kaplan Z, Chandrasekaran A, Chief Elk J, Browning A R, Kwak H S, Halls M D, Afzal M A F 2024 J. Cheminform. 16 31Google Scholar

    [26]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [27]

    Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D, Barati Farimani A 2020 Phys. Rev. Mater. 4 093801Google Scholar

    [28]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185Google Scholar

    [29]

    Louis S Y, Zhao Y, Nasiri A, Wang X, Song Y, Liu F, Hu J 2020 Phys. Chem. Chem. Phys. 22 18141Google Scholar

    [30]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digital Discovery 3 594Google Scholar

    [31]

    Omee S S, Fu N, Dong R, Hu M, Hu J 2024 npj Comput. Mater. 10 144Google Scholar

    [32]

    de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande C K, van der Zwaag S, Plata J J 2015 Sci. Data 2 150009Google Scholar

    [33]

    Jain A, Ong S P, Hautier G, et al. 2013 APL Mater. 1 011002Google Scholar

    [34]

    Curtarolo S, Setyawan W, Hart G L, et al. 2012 Comput. Mater. Sci. 58 218Google Scholar

    [35]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [36]

    Atomly 2025 https://atomly.net Accessed: 2025-01-13

    [37]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6 138Google Scholar

    [38]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80Google Scholar

    [39]

    Shuai C, Liu W, Li H, Wang K, Zhang Y, Xie T, Chen L, Hou H, Zhao Y 2023 Int. J. Plast. 170 103772Google Scholar

    [40]

    Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95 155206Google Scholar

    [41]

    Qin G, Huang A, Liu Y, Wang H, Qin Z, Jiang X, Zhao J, Hu J, Hu M 2022 Mater. Adv. 3 6826Google Scholar

    [42]

    Belomestnykh V N, Tesleva E P 2004 Tech. phys. 49 1098Google Scholar

    [43]

    Belomestnykh V N 2004 Tech. Phys. Lett. 30 91Google Scholar

    [44]

    Toher C, Oses C, Plata J J, Hicks D, Rose F, Levy O, de Jong M, Asta M, Fornari M, Buongiorno Nardelli M, Curtarolo S 2017 Phys. Rev. Mater. 1 015401Google Scholar

    [45]

    Wang H, Duan Z, Guo Q, Zhang Y, Zhao Y 2023 CMC-Comput. Mater. Continua 77 1393Google Scholar

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, 2025, 74(2): 028103. doi: 10.7498/aps.74.20241581
    [2] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化. 物理学报, 2025, 74(9): 096201. doi: 10.7498/aps.74.20241624
    [3] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究. 物理学报, 2025, 74(13): 135205. doi: 10.7498/aps.74.20250381
    [4] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, 2025, 74(13): 130201. doi: 10.7498/aps.74.20250362
    [5] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, 2025, 74(6): 060701. doi: 10.7498/aps.74.20240999
    [6] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [7] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [8] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [9] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [10] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [11] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [12] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [13] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [14] 张博凯. 胶体聚合物弹性模量的微观理论: 键长的效应. 物理学报, 2021, 70(12): 126401. doi: 10.7498/aps.70.20210128
    [15] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [16] 孙波. 胶原纤维网络和癌细胞的力学微环境. 物理学报, 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [17] 张维然, 李英姿, 王曦, 王伟, 钱建强. 原子力显微镜高次谐波幅度对样品弹性性质表征的研究. 物理学报, 2013, 62(14): 140704. doi: 10.7498/aps.62.140704
    [18] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究. 物理学报, 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [19] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [20] 王 权, 丁建宁, 何宇亮, 薛 伟, 范 真. 氢化硅薄膜介观力学行为及其与微结构内禀关联特性. 物理学报, 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
计量
  • 文章访问数:  624
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-25
  • 修回日期:  2025-03-18
  • 上网日期:  2025-04-10

/

返回文章
返回