-
采用密度泛函理论方法研究了Na原子修饰的Bn (n = 3—10)团簇的储氢性能. 结果表明, 两个Na原子能够与Bn团簇稳定地结合形成BnNa2 (n = 3—10)复合体. Na原子修饰的Bn团簇最多可以吸附10个氢分子, 平均吸附能处在0.063—0.095 eV/H2范围内, 最大储氢密度介于11.57%—20.45% (质量分数)之间. 分子动力学模拟表明, 温度越高, 氢分子的脱附速率越大, 脱附量也越大, 在常温条件下, BnNa2 (n = 3—8)团簇能够在短时间内(短于262 fs)实现完全脱氢, 因此, Na原子修饰的Bn团簇是一类极具潜力的储氢材料.Hydrogen is widely regarded as an ideal alternative energy source because of its high efficiency, abundance, pollution-free and renewable properties. One of the main challenges is to find efficient materials that can store hydrogen safely with fast kinetics, favorable thermodynamics, and high hydrogen density under ambient conditions. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface-to-volume rate, unique electronic structure and novel chemical and physical properties. In this study, the hydrogen storage properties of Na-decorated Bn (n = 3–10) clusters are investigated using dispersion-corrected density functional theory and atomic density matrix propagation (ADMP) simulations. The results show that Na atoms can stably bind to Bn clusters, forming BnNa2 complexes. The average binding energies (1.876–2.967 eV) of Na atoms on the host clusters are significantly higher than the cohesive energy of bulk Na (1.113 eV), which effectively prevents Na atoms from gathering on the cluster surface. Furthermore, when Na atoms bind to Bn (n = 3–10) clusters, electrons transfer from Na to B atoms, resulting in positively charged Na atoms. Hydrogen molecules are moderately polarized under the electric field and adsorbed around Na atoms through electrostatic interactions. The H–H bonds are slightly stretched but not broken. The Na-decorated Bn clusters can adsorb up to 10 hydrogen molecules with average adsorption energies of 0.063–0.095 eV/H2 and maximum hydrogen storage densities reaching 11.57%–20.45%. Almost no structural change is observed in the host clusters after adsorbing hydrogen. Molecular dynamics simulations reveal that the desorption rate of hydrogen molecules increases with temperature rising. At ambient temperature (300 K), BnNa2 (n = 3–8) clusters achieve complete dehydrogenation within 262 fs, while B9Na2 and B10Na2 clusters exhibit a dehydrogenation rate of 90% within 1000 fs. The Na-decorated Bn (n = 3–10) clusters not only exhibit excellent properties for hydrogen storage but also enable efficient dehydrogenation at ambient temperature. Thus, BnNa2 (n = 3–10) clusters can be regarded as highly promising candidates for hydrogen storage.
-
Keywords:
- boron clusters /
- hydrogen storage performance /
- adsorption energy /
- density functional theory
[1] Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503
Google Scholar
[2] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161
Google Scholar
[3] Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937
Google Scholar
[4] Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885
Google Scholar
[5] Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182
Google Scholar
[6] https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office [2025-2-1]
[7] Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phys. B 23 067303
Google Scholar
[8] Mohan M, Sharma V K, Kumar E A, Gayathri V 2019 Energy Storage 1 e35
Google Scholar
[9] Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961
Google Scholar
[10] Tang C M, Wang Z G, Zhang X, Wen N H 2016 Chem. Phys. Lett. 661 161
Google Scholar
[11] Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102
Google Scholar
[12] Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681
Google Scholar
[13] Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838
Google Scholar
[14] Ma L C, Wang L C, Sun Y R, Ma L, Zhang J M 2021 Physica E 128 114588
Google Scholar
[15] Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437
Google Scholar
[16] Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461
Google Scholar
[17] Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387
Google Scholar
[18] Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022
Google Scholar
[19] Tang C M, Zhang X 2016 Int. J. Hydrogen Energy 41 16992
Google Scholar
[20] Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861
Google Scholar
[21] Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821
Google Scholar
[22] Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419
[23] Si L, Tang C M 2017 Int. J. Hydrogen Energy 42 16611
Google Scholar
[24] Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B 20 043104
Google Scholar
[25] Zhang Y F, Cheng X L 2019 Physica E 107 170
Google Scholar
[26] Becke A D 1992 J. Chem. Phys. 96 2155
Google Scholar
[27] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
Google Scholar
[28] Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200
Google Scholar
[29] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
Google Scholar
[30] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
Google Scholar
[31] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C. 01. Wallingford, CT
[32] Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729
Google Scholar
[33] Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84
Google Scholar
[34] Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881
Google Scholar
[35] Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019
Google Scholar
-
表 1 在BnNa2(n = 3—10)团簇中, Na原子的平均结合能(Eb), HOMO-LUMO能隙(Eg), Na—B平均距离(dNa—B), Na—Na平均距离(dNa—Na), Na原子的NBO电荷(QNa)
Table 1. The average binding energy (Eb) of Na atoms, HOMO-LUMO energy gap (Eg), average bond lengths of natrium-boron (dNa—B), natrium-natrium (dNa—Na) and NBO charge of Na atoms (QNa) in the BnNa2 (n = 3–10) clusters.
团簇 Eb/eV Eg/eV dNa—B/Å dNa—Na/Å QNa/e B3Na2 1.876 2.807 2.519 4.332 0.837 B4Na2 1.756 1.901 2.355 4.043 0.868 B5Na2 1.859 1.867 2.406 4.440 0.899 B6Na2 2.520 2.745 2.536 5.189 0.902 B7Na2 2.162 2.474 2.646 5.079 0.894 B8Na2 2.967 3.320 2.424 4.849 0.979 B9Na2 2.572 3.546 2.669 4.667 0.972 B10Na2 2.120 2.348 2.359 6.574 0.979 表 2 在BnNa2(H2)10 (n = 3—10)团簇中, 氢分子的平均吸附能(Eads), 氢分子的平均键长(dH—H), 氢分子与Na原子之间的平均距离(dNa—H2), Na—B平均距离(dNa—B)以及储氢密度
Table 2. The average adsorption energy (Eads), average bond lengths of hydrogen-hydrogen (dH—H), natrium-hydrogen molecule (dNa—H2), natrium-boron (dNa—B) and gravimetric density of H2 of BnNa2(H2)10 (n = 3–10) cluster.
饱和吸氢结构 Eads/eV dH—H/Å dNa—H2/Å dNa—B/Å H2/% B3Na2(H2)10 0.063 0.749 2.561 2.550 20.45 B4Na2(H2)10 0.066 0.749 2.578 2.379 18.43 B5Na2(H2)10 0.073 0.749 2.569 2.474 16.77 B6Na2(H2)10 0.085 0.749 2.552 2.672 15.39 B7Na2(H2)10 0.077 0.748 2.590 2.620 14.22 B8Na2(H2)10 0.088 0.748 2.553 2.477 13.21 B9Na2(H2)10 0.087 0.748 2.583 2.668 12.33 B10Na2(H2)10 0.095 0.749 2.535 2.433 11.57 表 3 BnNa2 (n = 3—10)团簇吸附氢分子前后每个原子上的平均NBO电荷
Table 3. Average NBO charges on each atom before and after H2 adsorption of BnNa2 (n = 3–10) clusters.
团簇 吸氢前 饱和吸氢后 QB/e QNa/e QB/e QNa/e QH/e B3Na2 –0.558 0.837 –0.565 0.848 0.001 B4Na2 –1.023 0.938 –0.896 0.866 0.001 B5Na2 –0.837 0.899 –0.685 0.878 0.001 B6Na2 –0.675 0.902 –0.483 0.889 0.005 B7Na2 –0.258 0.894 –0.381 0.891 0.006 B8Na2 –0.146 0.979 –0.132 0.919 0.005 B9Na2 –0.109 0.972 –0.087 0.912 0.007 B10Na2 –0.376 0.979 –0.317 0.912 0.005 -
[1] Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503
Google Scholar
[2] Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161
Google Scholar
[3] Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937
Google Scholar
[4] Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885
Google Scholar
[5] Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182
Google Scholar
[6] https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office [2025-2-1]
[7] Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phys. B 23 067303
Google Scholar
[8] Mohan M, Sharma V K, Kumar E A, Gayathri V 2019 Energy Storage 1 e35
Google Scholar
[9] Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961
Google Scholar
[10] Tang C M, Wang Z G, Zhang X, Wen N H 2016 Chem. Phys. Lett. 661 161
Google Scholar
[11] Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102
Google Scholar
[12] Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681
Google Scholar
[13] Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838
Google Scholar
[14] Ma L C, Wang L C, Sun Y R, Ma L, Zhang J M 2021 Physica E 128 114588
Google Scholar
[15] Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437
Google Scholar
[16] Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461
Google Scholar
[17] Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387
Google Scholar
[18] Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022
Google Scholar
[19] Tang C M, Zhang X 2016 Int. J. Hydrogen Energy 41 16992
Google Scholar
[20] Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861
Google Scholar
[21] Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821
Google Scholar
[22] Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419
[23] Si L, Tang C M 2017 Int. J. Hydrogen Energy 42 16611
Google Scholar
[24] Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B 20 043104
Google Scholar
[25] Zhang Y F, Cheng X L 2019 Physica E 107 170
Google Scholar
[26] Becke A D 1992 J. Chem. Phys. 96 2155
Google Scholar
[27] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
Google Scholar
[28] Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200
Google Scholar
[29] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
Google Scholar
[30] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
Google Scholar
[31] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C. 01. Wallingford, CT
[32] Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729
Google Scholar
[33] Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84
Google Scholar
[34] Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881
Google Scholar
[35] Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019
Google Scholar
计量
- 文章访问数: 305
- PDF下载量: 17
- 被引次数: 0