搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导体的Higgs物理

储灏 张昊天 张至立

引用本文:
Citation:

超导体的Higgs物理

储灏, 张昊天, 张至立

Higgs physics in superconductors

CHU Hao, ZHANG Haotian, ZHANG Zhili
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Nambu-Goldstone理论指出: 连续对称的破缺会产生零能的玻色激发. 在超导相变中, 连续的局域U(1) 规范对称发生破缺, 理应产生零能的集体模式(即超导相位模式). 1962年, Philip Anderson指出: 库珀对(Cooper pairs)之间的库仑相互作用使该零能模跃迁至等离子体频率. 因此超流体在库珀对配对能量(2Δ)以内不存在玻色激发, 这套机制还导致介导电磁相互作用的光子获得质量. Anderson机制为超导体保持零损耗电流、展现完全抗磁效应提供了微观解释. 1964年, 为解释介导电弱相互作用的W±, Z玻色子为何具有质量, Peter Higgs, François Englert, Tom Kibble等分别提出自然界中存在(现称作)Higgs场的假设: 该物质场与零质量的W±, Z玻色子耦合, 使它们产生质量. 这套机制与超导体中光子产生质量的机制相似, 被统称为Anderson-Higgs机制. 2013年, 欧洲大型强子对撞机捕捉到Higgs场的标量激发(即Higgs boson)的实验证据, 证实了半个世纪以来关于Higgs场的猜想. 与Higgs boson对应的超导振幅模式因此被称作超导Higgs模式. 近半个世纪以来, 在众多超导材料的谱学研究中, 该模式同样难寻踪迹. 近年来, 超快/非线性谱学技术的发展与运用使谱学实验可以更加有效地捕获Higgs模式的踪迹. 本文将介绍超导Higgs模式的历史背景与最新研究进展, 讨论Higgs模式可能为高温超导研究带来的崭新视角、机遇与挑战.
    As pointed out by Nambu-Goldstone theorem, the breaking of continuous symmetry gives rise to massless or gapless bosonic excitations. In superconductors, continuous local U(1) gauge symmetry is broken. The gapless excitation thus created is the collective phase mode of the superconducting order parameter. In 1962, Philip Anderson pointed out that the Coulomb interaction between Cooper pairs elevated this gapless mode to the superconducting plasma frequency. Therefore, in a superconducting fluid there are no bosonic excitations below the binding energy of the Cooper pairs (2Δ). Anderson’s mechanism also leads the photon to acquire mass as it mediates electromagnetic interaction. This mechanism provides a microscopic theory for the dissipationless charge transport (in conjunction with Landau’s criterion for superfluidity) as well as the Meissner effect inside a superconductor. Jumping into particle physics, in 1964 in order to explain why the gauge bosons for electroweak interaction, namely the W±, Z bosons, acquired mass, Peter Higgs, François Englert, Tom Kibble and their colleagues proposed the existence of a field (presently referred to as the Higgs field) in nature. This matter field couples to the massless W±, Z bosons and generates mass via the Higgs mechanism. Due to their conceptual similarities, these two mechanisms are collectively referred to as the Anderson-Higgs mechanism nowadays. In 2013, the scalar excitation of the Higgs field, namely the Higgs bosons, was detected at the Large Hadron Collider, providing the final proof for the Higgs hypothesis nearly 50 years after its proposal. The amplitude mode of the superconducting order parameter, which corresponds to the Higgs boson through the above analogy, is referred to as the Higgs mode of a superconductor. Its spectroscopic detection has also remained elusive for nearly half a century. In recent years, the development of ultrafast and nonlinear spectroscopic techniques makes them an effective approach to investigating the Higgs mode of superconductors. In this paper, the historical background of the Higgs mode is introduced and the recent developments in its spectroscopy investigation are reviewed. The novel perspectives and insights that may be learnt from these studies for future high-temperature superconductivity research are also discussed.
  • 图 1  朗道超流判据 (a) 无相互作用粒子的能量-动量色散关系, 当粒子以速度 $ \boldsymbol{v} $(红色实线斜率)关于环境(如容器壁、晶格)匀速运动时, 粒子的能谱(黑色虚线)发生多普勒位移(蓝色虚线), 与$ \boldsymbol{v} $ 同方向的激发态发生红移, 与$ \boldsymbol{v} $ 反方向的激发态发生蓝移; 当激发态的能量红移至0时(严格来说0 + kBT 范围内), 环境与粒子之间的热涨落会使粒子自发产生激发, 粒子因此不再处于能量基态, 玻色凝聚以及超流因此遭到破坏; (b) 氦原子间的范德瓦耳斯作用力使液氦展现出集体振荡模式, 在长波极限(Q → 0)下, 其色散呈线性关系, 保证超流液氦以该斜率以下的速度匀速运动时不会自发产生声子激发, 超流液氦的临界速度 $ {\boldsymbol{v}}_{{\mathrm{c}}} $ 实际对应的是系统自发产生更高波矢量的roton激发的相速度[5]

    Fig. 1.  Landau criteria for superfluidity. (a) Energy-momentum dispersion relation of a non-interacting particl, when a particle travels at a velocity $ \boldsymbol{v} $ (corresponding to the gradient of the red solid line) with respect to its environment (e.g. container, lattice), its spectrum (black dotted line) is Doppler-shifted (i.e. to the blue dotted line), excitations with wavevectors parallel to $ \boldsymbol{v} $ are red-shifted while excitations with wavevectors anti-parallel to $ \boldsymbol{v} $ are blue-shifted; when an excitation state is red-shifted to 0 (strictly speaking 0 + kBT) energy, thermal fluctuations between the environment and the particle in consideration may cause the particle to be spontaneously excited to that state; the particle no longer remains in its ground state, therefore the Bose-Einstein condensation and the superfluidity will be destroyed along the way. (b) The van der Waals interaction between helium atoms causes liquid helium to exhibit collective modes, in the long-wavelength limit (Q → 0), these collective modes exhibit a linear dispersion. As long as superfluid helium flows at a speed smaller than the gradient of such acoustic mode, phonons will not be spontaneously excited. The critical velocity of superfluid helium corresponds to the phase velocity of the roton excitations[5].

    图 2  超导体的集体模式 (a) 超导转变温度(Tc)以下, 超导序的自由能 $ F $ 关于序参量 $ \psi =\left|\psi \right|{{\mathrm{e}}}^{{\mathrm{i}}\phi } $ 展现墨西哥帽状的势能面, 在平衡态下, 序参量自发破缺周向的连续U(1) 对称, 序参量沿周向的运动对应超导相位 $ \phi $ 的涨落, 沿径向的运动对应超导振幅 $ \left|\psi \right| $ 的涨落, 这两个模式的能量分别为零和大于零, 因此可以看作无质量和有质量的准粒子激发; (b) 超导相位模式和振幅模式的色散关系[6], 其中零质量的相位模式通过Anderson机制产生质量, 其能量提升至超导等离子体频率($ {\omega }_{{\mathrm{p}}} $); 有质量的振幅模式在长波极限下展现出2Δ的能隙

    Fig. 2.  Collective modes of a superconductor: (a) Below the superconducting transition temperature (Tc), the free energy of a superconductor exhibits a Mexican hat-like potential surface with respect to the superconducting order parameter $ \psi =\left|\psi \right|{{\mathrm{e}}}^{{\mathrm{i}}\phi }, $ in thermal equilibrium, the continuous U(1) symmetry of the order parameter along the circumferential direction is spontaneously broken, the collective motion of the order parameter along the circumferential direction corresponds to fluctuations in the superconducting order parameter phase $ \phi $; the collective motion along the radial direction corresponds to fluctuations in the superconducting order parameter amplitude $ \left|\psi \right| $, the energy of these two modes are zero and non-zero respectively, they can be described as massless and massive quasiparticles; (b) dispersions of the phase mode and the amplitude mode of the superconducting order parameter[6], here, the massless phase mode becomes massive due to the Anderson mechanism, its frequency is lifted to the superconducting plasma frequency ($ {\omega }_{{\mathrm{p}}} $), the massive amplitude mode is gapped in the long-wavelength limit with an energy of 2Δ.

    图 3  2H-NbSe2的拉曼散射实验 (a) 在Sooryakumar和Klein的实验中[17], 通过施加外界磁场抑制超导态, 超导集体模式(~ 20 cm–1)与电荷密度波集体模式(~ 40 cm–1)的拉曼散射谱权重发生交换; (b) Méasson等[55]通过改变温度, 同样观测到超导集体模式与电荷密度波集体模式的拉曼散射谱权重发生交换, 在6 K附近, 两者的谱权重大致相等

    Fig. 3.  Raman scattering experiments on 2H-NbSe2: (a) In the experiment by Sooryakumar and Klein[17], the intensities of the superconductor collective mode (~ 20 cm–1) and the charge-density-wave collective mode (~ 40 cm–1) exchange spectral weight under the application of an external magnetic field that suppresses superconductivity; (b) by varying temperature, Méasson et al. [55] also observe an spectral weight transfer between the superconductor collective mode and the charge-density-wave collective mode. Around 6 K, the two modes have approximately equal spectral weight.

    图 4  Higgs模式的时域自由振荡[21] (a) Matsunaga等[21]采用单周期太赫兹泵浦 - 单周期太赫兹探测手段测量了Nb1–xTixN超导薄膜的超快透射率; (b) 在单周期太赫兹脉冲对超导基态进行扰动后, 样品的太赫兹透射率呈现频率f~2Δ的自由振荡, 通过增大泵浦光的能量密度, 振荡频率 f 逐步降低、并伴随自由振荡的阻尼系数b逐步增强

    Fig. 4.  Time-domain free oscillations of the Higgs mode[21]: (a) Using single-cycle terahertz pump – single-cycle terahertz probe technique, Matsunaga et al. [21] studied the ultrafast terahertz transmission of Nb1–xTixN superconducting thin films; (b) after the superconducting ground state is perturbed by the single-cycle pump pulse, the terahertz transmissivity of the sample is probed and is found to exhibit a free oscillation with a frequency f~2Δ, with increasing pump pulse energy density, the oscillation frequency f decreases, accompanied also by an increase in the damping constant b.

    图 5  多周期太赫兹光电场驱动的Higgs振荡[22] (a) Matsunaga等[22]利用太赫兹带通滤片过滤单周期太赫兹脉冲, 产生窄带多周期太赫兹光电场, 作为泵浦驱动NbN超导薄膜; 另一束单周期太赫兹脉冲作为探针测量样品的透射率; (b) 多周期太赫兹泵浦的波形及其模平方波形; (c) 在多周期太赫兹泵浦驱动下, 样品在Tc以上及以下的太赫兹透射率演化, 在Tc以上, 太赫兹泵浦仅诱导系统热化、带来透射率的单调变化; 而在Tc以下, 太赫兹泵浦诱导超流体展现出二倍驱动频的相干振荡, 起源于Higgs模式的受驱振荡

    Fig. 5.  Higgs oscillations driven by multi-cycle terahertz pulses[22]: (a) Matsunaga et al. [22] pump the NbN superconducting films using multi-cycle terahertz pulses filtered from the single-cycle terahertz pulses (i.e. by using bandpass filters), and probe the transmissivity of the sample using another single-cycle terahertz pulse; (b) the waveform of the multi-cycle terahertz pulse and its modulus square; (c) under the drive of the multi-cycle terahertz pulses, the terahertz transmissivity of the sample exhibits characteristic time-evolutions above and below Tc, above Tc, the terahertz pump induces only thermal heating of the sample, manifested as a monotonic time-evolution of the terahertz transmissivity; below Tc, the terahertz pump induces a coherent oscillation of the superfluid at twice the driving frequency, originating from the driven Higgs oscillation.

    图 6  NbN超导体的太赫兹三次谐波响应[22] (a) Matsunaga等[22]使用多周期太赫兹驱动光入射在NbN超导薄膜上, 从样品透射的太赫兹光谱中可以观测到明显的三次谐波响应; (b) 超导序参量2Δ的温度依赖以及两倍驱动频率 (ω = 0.3, 0.5, 0.7 THz) 的对比; (c) 不同频率的太赫兹场驱动下三次谐波强度的温度依赖, 可以看出当满足2Δ(T) = 2ω条件时, Higgs模式的受驱振荡与驱动场发生共振, 导致三次谐波信号的发散

    Fig. 6.  Terahertz third harmonic generation (THG) response of NbN superconductors[22]: (a) Using multi-cycle terahertz pulses to drive the NbN superconducting thin film, Matsunaga et al. [22] observe a clear terahertz THG response from the sample below Tc; (b) the temperature-dependent superconducting order parameter 2Δ compared to twice the terahertz driving frequency (ω = 0.3, 0.5, 0.7 THz); (c) the temperature dependence of the THG intensity under different terahertz driving frequencies. At temperatures that satisfy 2Δ(T) = 2ω, the driven Higgs oscillation is resonant with the driving field, leading to a divergence of the THG signal.

    图 7  多周期太赫兹电场驱动Anderson pseudospin的进动过程[22] (a), (c) BCS超导态下, 费米面附近的$ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ 电子对与$ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ 空穴对相干叠加形成库珀对, 将$ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ 电子对的占据状态定义为pseudospin = 1/2(占据态)和pseudospin = –1/2 (空态), 则BCS超导态可以由它们的相干叠加表示. 投影到这两个pseudospin态定义的Bloch球上, 超导态对应xy平面内的一个单位长度矢量; (b)对于半填充的金属而言, 费米面附近的$ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ 电子对与$ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ 空穴对无相干配对, 费米面由pseudospin = 1/2 态直接过渡到pseudospin = –1/2 态; (d) 在周期太赫兹场驱动下, BCS超导态对应的pseudospin发生进动行为, 意味超导序参量发生涨落

    Fig. 7.  Precession of the Anderson pseudospin under a multi-cycle terahertz drive[22]: (a), (c) In the BCS state, pairs of electrons at $ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ and pairs of holes at $ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ are coherently superposed to form Cooper pairs, the occupancy of the pair of states at $ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ can be used to define a pseudospin = 1/2 state (occupied state) and a pseudospin = –1/2 state (empty state), thus, the BCS state can be expressed as a superposition of the two pseudospin states, when projected to the Bloch sphere defined by the two pseudospin states, the BCS state corresponds to a unit-vector lying in the xy-plane; (b) in the normal metallic state, there is no coherence between the electrons at $ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $ and the holes at $ {({\boldsymbol{k}}_{\uparrow }, -\boldsymbol{k}}_{\downarrow }) $, therefore, the Fermi surface represents a disrupt transition from the pseudospin = 1/2 state to the pseudospin = –1/2 state; (d) under the periodic drive of a terahertz pulse, the BCS state undergoes a precession in the pseudospin representation, signifying collective fluctuations in the superconducting order parameter.

    图 8  拉曼散射的微观机制 (a) 非共振光子-电子散射(也称作双光子散射、带内散射、diamagnetic scattering)诱导电子-空穴对密度涨落, 散射前后光子、电子的能量、动量均发生变化; (b) 共振光子-电子散射(也称作带间散射、paramagnetic scattering)过程中光子被电子完全吸收、产生电流、再辐射; (c) 非共振弹性(Rayleigh)散射过程; (d) 共振弹性(Rayleigh)散射过程; (e) 太赫兹三次谐波生成过程; (f) 非共振拉曼/太赫兹三次谐波散射过程; (g) 两种玻色子共同参与的非共振拉曼/太赫兹三次谐波散射过程, 其中波浪线为光子传播子, 实线为电子传播子, 红色双虚线和黑色双波浪线为玻色子传播子

    Fig. 8.  Microscopic mechanisms for Raman scattering in solids. (a) Non-resonant photon-electron scattering (also known as two-photon scattering, intraband scattering, diamagnetic scattering) induces electron-hole density fluctuations. During the scattering, the energy and momentum of the photon and the electron both change. (b) In the resonant photon-electron scattering process (also known as interband scattering, paramagnetic scattering), a photon is absorbed by an electron and generates a current, which later re-radiates out a photon. (c) Microscopic process for non-resonant elastic (Rayleigh) scattering. (d) Microscopic process for resonant elastic (Rayleigh) scattering. (e) Microscopic process for terahertz third harmonic generation (THG). (f) Microscopic process for non-resonant Raman scattering/terahertz THG. (g) Microscopic process for non-resonant Raman scattering/terahertz THG involving two different bosons, where wavy lines represents photon propagator, solid lines represents electron propagator, red double dotted lines and black double wavy lines represent boson propagators.

    图 9  铜基高温超导体的太赫兹三次谐波响应[50] (a)—(c) 最佳掺杂La2–xSrxCuO4, DyBa2Cu3O7–x, YBa2Cu3O7–x中太赫兹三次谐波强度的温度依赖; (d)—(f) 这3个样品中太赫兹三次谐波相位的温度依赖, 黑色虚线表示Tc, 红色实线表示三次谐波相位发生 -π跳跃的温度(Tπ), 与(a)—(c)中振幅响应的局域最低点重合, 对应耦合双谐振子模型中的反共振(anti-resonance)或法诺共振(Fano resonance)现象, 插图为Tπ 温度以上及以下两组三次谐波时域信号的对比

    Fig. 9.  Terahertz THG response of cuprate high-temperature superconductors[50]: (a)–(c) Temperature dependence of the terahertz THG intensity from optimally-doped La2–xSrxCuO4, DyBa2Cu3O7–x, YBa2Cu3O7–x thin films; (d)–(f) temperature dependence of the terahertz THG phase from the three samples, black dotted line represents Tc, red solid line marks the temperature (Tπ) at which the THG phase shows an abrupt jump of -π, which coincides with the local minimum in the THG amplitude response in (a)–(c), these features are well-described by the anti-resonance of a coupled oscillators model or the Fano resonance, insets are the comparison of two representative time-domain THG responses below and above Tπ.

    图 10  铜基高温超导体太赫兹三次谐波响应的磁场依赖[28] (a) 超导体Higgs模式与另一集体模式耦合示意图, 在Tπ温度以下(以上)两者的受驱振荡展现出相同(相反)相位, 这个相位翻转符合离散模式与连续激发态之间的法诺共振特征; (b) 一般谱学实验观测到的法诺共振体现在激发态关于不同驱动频率/探测波长(ωdrive)的非常规振幅/相位响应; 在太赫兹三次谐波实验中, 通过温度改变集体模式的共振频(ωosc1), 而太赫兹驱动频率保持不变, 因此法诺共振体现在集体模式关于自身共振频(或超导体温度)的振幅/相位响应; (c), (e) 最佳掺杂及过掺杂La2–xSrxCuO4样品在不同磁场环境下的太赫兹三次谐波强度的温度依赖; (d), (f) 相应的太赫兹三次谐波响应的相位磁场及温度依赖, 磁场平行于样品的c轴, 可以看出, 沿c轴方向的磁场抑制了三次谐波信号随温度展现出的法诺共振现象

    Fig. 10.  Magnetic field dependence of the terahertz THG response of cuprate high-temperature superconductors[28]. (a) Illustration for the coupling of the Higgs mode to another collective mode. Below (above) Tπ the driven motions of the two oscillators are in-phase (out-of-phase), consistent with the phase evolution of the Fano resonance between an underdamped mode and a continuous background. (b) In typical spectroscopy manifestations, Fano resonance is studied as a function of the driving frequency/probing wavelength (ωdrive), in the terahertz THG experiment, the resonance frequency of the collective mode is varied by varying temperature while the terahertz driving frequency is kept constant. In this case, the Fano resonance is manifested in the characteristic evolution of the amplitude and phase response of the collective mode as function of its own resonance frequency. (c), (e) The temperature-dependent THG intensity from an optimally-doped and overdoped La2–xSrxCuO4 thin film under different magnetic field strengths. (d), (f) The temperature-dependent THG phase of the two samples under different magnetic field strengths. The magnetic field is applied along the c-axis of the sample. It is clear that the c-axis magnetic field suppresses the Fano resonance manifested in the THG response (i.e. its temperature dependence).

    图 11  2H-NbSe2的太赫兹三次谐波响应[53] (a) 超导及电荷密度波温度区间内的太赫兹三次谐波时域响应, 黑色箭头标注两个不同来源的三次谐波响应之间的干涉; (b) 太赫兹三次谐波强度的温度依赖, 在6 K附近, 可以看到两个不同来源的三次谐波响应之间的相消干涉导致三次谐波整体强度展现出局域最低点

    Fig. 11.  Terahertz THG response of 2H-NbSe2[53]: (a) Time-domian terahertz THG response of the sample throughout the superconducting and the charge-density-wave temperature range, the black arrow marks the interference between two distinct sources of THG; (b) the temperature dependence of the total terahertz THG intensity. Near 6 K, the destructive interference between the two sources of THG leads to a suppression of the total THG intensity. This in turn leads to a local minimum in the temperature dependence of the total THG intensity.

    图 12  YBa2Cu3O7–x的太赫兹三次谐波响应[54] (a) 最佳掺杂样品(Tc = 87.4 K)在85 K的太赫兹透射小波分析, 实验采用的驱动频率为0.5 THz, 从时域响应可以看出三次谐波(1.5 THz)响应展现出一前一后两个波包; (b) 样品在该温度下的三次谐波波形, 更加清晰地展示两部分波包; (c) 傅里叶谱显示频率相近的两个不同三次谐波信号成分; (d) 太赫兹三次谐波信号启始温度(TTHG)在YBa2Cu3O7–x相图中的分布, T*为赝能隙启始温度, TKerr表示光学克尔实验报道的时间反演对称破缺温度, Tonset表示c轴红外光谱实验探测到的超导涨落启始温度

    Fig. 12.  Terahertz THG response of YBa2Cu3O7–x[54]: (a) The moving-wavelet Fourier analysis of the terahertz transmission of an optimally-doped sample (Tc = 87.4 K) under 0.5 THz periodic drive at 85 K, the time-domain THG response exhibits two individual wavelets separated in time; (b) the time-domain THG waveform; (c) Fourier transform of the time-domain waveform shows two distinct components under the THG peak; (d) the onset temperature for the terahertz THG response (TTHG) in the YBa2Cu3O7–x phase diagram, T* denotes the onset temperature for the pseudogap, TKerr denotes the onset temperature for time-reversal symmetry breaking reported from optical Kerr measurements, Tonset denotes the onset temperature for superconducting fluctuations as determined by c-axis infrared ellipsometry measurements.

    图 13  交织序的研究策略: 平衡态与非平衡态 (a)对于交织序(如超导与电荷密度波), 过往研究往往依赖于平衡态物性表征, 譬如, 通过施加外界磁场、应力场抑制超导态, 再利用X射线衍射观察电荷密度波的关联长度、临界温度, 从而得出两个序参量之间相互竞争、独立或协作的结论; 在提供不同序参量之间存在相互作用以及相互作用类型(吸引、排斥)实验证据的基础上, 这类手段无法提供更加具体、微观的信息; 这种平衡态研究策略可以类比为拉动耦合双谐振子中的一个, 由于耦合弹簧的存在, 另一个谐振子也相应发生位移; 通过观察两个谐振子的静态位移, 可以获知两个谐振子之间存在耦合, 却无法得知耦合的具体形式、能量尺度等物理信息. (b) 当我们动态驱动这两个耦合谐振子中的一个时, 两个谐振子之间的能量传递受耦合弹簧系数的影响, 导致不同的动力学过程, 因此通过观察两个谐振子的运动, 可以获取耦合弹簧的具体参数信息, 同理对于交织序, 通过动态观测耦合序参量的动力学过程, 我们有望得出更加微观的耦合机制、能量尺度等物理信息

    Fig. 13.  Experimental approaches for investigating intertwined orders: equilibrium versus non-equilibrium. (a) For investigating the relationship between intertwined orders (e.g. superconductivity and charge-density-wave), past studies have focused on their equilibrium manifestations. For example, by applying an external magnetic field or a strain field to suppress superconductivity, one may study the resulting charge-density-wave correlation length or critical temperature using X-ray diffraction. The results allow one to conclude whether the two orders compete or co-operate, or stay independent. While such an equilibrium approach provides evidence for the interaction between the two orders and its type (i.e. attractive or repulsive), it does not provide further microscopic information about the interaction. Such an equilibrium strategy can be compared to displacing a coupled harmonic oscillator. Due to the presence of the coupling spring, the other oscillator is also displaced. By observing the static displacements of the two oscillators, one may infer that they are coupled. However, nothing more detailed about the coupling spring can be learnt using this approach. (b) When we dynamically drive one of the coupled oscillators, the energy transfer between the two oscillators depends sensitively on the coupling spring constant. Therefore, by following the dynamics of both oscillators, we may obtain precise knowledge about the coupling spring constant. In a similar spirit, by studying the dynamics of the individual orders that are intertwined, we may obtain more microscopic information about their coupling mechanism and its energy-scale.

    图 14  二维光谱技术, 对于存在多自由度的物理体系而言, 不同自由度(包括它们的激发态)之间是否存在耦合, 是理解这类体系物性、相变的关键信息; 传统线性谱学技术(如吸收谱、反射谱、拉曼散射等)对于表征不同自由度的激发态已较为成熟, 然而这类谱学技术对于表征、验证不同自由度之间的相互作用却难以提供有效数据; 在这方面, 二维光谱技术具有巨大潜力, 该技术采用多束宽谱脉冲, 对样品中不同自由度的动力学过程进行探测; 第1束脉冲同时产生多个激发态: (中图)如果这些激发态源自同一个基态(同一个自由度), 或者(右图)这些激发态源自不同自由度但是它们之间存在耦合, 则这些激发态之间会产生相干性; 在一定时间延时τ后, 第2束以及第3束脉冲照射在样品上, 诱导该相干态的演化(rephasing或non-rephasing); 最后, 该相干态通过辐射, 使各自由度回落到基态. 通过采集不同延时τ下的辐射光谱, 并将其对τ做傅里叶变化, 可以获得以上示意的二维光谱信息, 二维光谱对角线上的峰对应各激发态的能量, 非对角线上的峰表示两个激发态之间的相干性(具体可以解读为源自同一基态或者存在能量弛豫通道等), 相较于线性谱学技术, 二维光谱可以提供更加直观、具体的耦合信息

    Fig. 14.  2D spectroscopy, for systems exhibiting many different degrees of freedom (DOFs), the coupling between these DOFs (including their excitations) is often the key to understanding the physical properties or phase transitions of these systems. While conventional linear spectroscopy techniques (e.g. absorption, reflection, Raman scattering) are good at capturing the excitations of different types of DOFs, evidencing or characterizing the interactions between different DOFs proves to be difficult with current techniques. In this regard, 2D spectroscopy has demonstrated significant potential. 2D spectroscopy uses several broadband pulses to study the dynamics of multiple DOFs. The first pulse induces multiple excitations: (middle panel) if the excitations derive from the same ground state (i.e. the same DOF), or (right panel) if they derive from different DOFs but there is a coupling in-between, then a coherence between these excitations will be established. After a variable time-delay τ, the second and the third pulse interact with the sample, inducing an evolution of the coherent state (e.g. rephasing or non-rephasing). Finally, the coherent state radiates and the system falls back to the ground state. By sampling the radiation spectrum at each τ, and Fourier transforming these results with respect to τ, one obtains a 2D spectrum as illustrated above. The peaks lying on the diagonal of the 2D spectrum represents individual excitations. The peaks lying on the off-diagonal represents coherence between two excitations (they encode information such as a common ground-state for the two excitations or a relaxation channel between the two excitations). Compared to traditional linear spectroscopy techniques, 2D spectroscopy provides more direct and detailed information about the interaction between different DOFs.

  • [1]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 106 162Google Scholar

    [2]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    McMillan W L 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Landau L 1941 Phys. Rev. 60 356Google Scholar

    [5]

    Yarnell J L, Arnold G P, Bendt P J, Kerr E C 1958 Phys. Rev. Lett. 1 9Google Scholar

    [6]

    Shimano R, Tsuji N 2020 Annu. Rev. Condens. Matter Phys. 11 103Google Scholar

    [7]

    Anderson P W 1963 Phys. Rev. 130 439Google Scholar

    [8]

    Basov D N, Woods S I, Katz A S, Singley E J, Dynes R C, Xu M, Hinks D G, Homes C C, Strongin M 1999 Science 283 49Google Scholar

    [9]

    Higgs P W 1964 Phys. Rev. Lett. 13 508Google Scholar

    [10]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321Google Scholar

    [11]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Lett. 13 585Google Scholar

    [12]

    Volkov A F, Kogan S M 1973 J. Exp. Theor. Phys. 65 2038

    [13]

    Peronaci F, Schiró M, Capone M 2015 Phys. Rev. Lett. 115 257001Google Scholar

    [14]

    Pekker D, Varma C M 2015 Annu. Rev. Condens. Matter Phys. 6 269Google Scholar

    [15]

    Podolsky D, Auerbach A, Arovas D P 2011 Phys. Rev. B 84 174522Google Scholar

    [16]

    Cea T, Castellani C, Seibold G, Benfatto L 2015 Phys. Rev. Lett. 115 157002Google Scholar

    [17]

    Sooryakumar R, Klein M V 1980 Phys. Rev. Lett. 45 660Google Scholar

    [18]

    Sooryakumar R, Klein M V 1981 Phys. Rev. B 23 3213Google Scholar

    [19]

    Littlewood P B, Varma C M 1981 Phys. Rev. Lett. 47 811Google Scholar

    [20]

    Littlewood P B, Varma C M 1982 Phys. Rev. B 26 4883Google Scholar

    [21]

    Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z, Shimano R 2013 Phys. Rev. Lett. 111 057002Google Scholar

    [22]

    Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H, Shimano R 2014 Science 345 1145Google Scholar

    [23]

    Anderson P W 1958 Phys. Rev. 112 1900Google Scholar

    [24]

    Tsuji N, Aoki H 2015 Phys. Rev. B 92 064508Google Scholar

    [25]

    Mansart B, Lorenzana J, Mann A, Odeh A, Scarongella M, Chergui M, Carbone F 2013 Proc. Natl. Acad. Sci. U. S. A. 110 4539Google Scholar

    [26]

    Devereaux T P, Hackl R 2007 Rev. Mod. Phys. 79 175Google Scholar

    [27]

    Katsumi K, Tsuji N, Hamada Y I, Matsunaga R, Schneeloch J, Zhong R D, Gu G D, Aoki H, Gallais Y, Shimano R 2018 Phys. Rev. Lett. 120 117001Google Scholar

    [28]

    Chu H, Kovalev S, Wang Z X, Schwarz L, Dong T, Feng L, Haenel R, Kim M-J, Shabestari P, Hoang L P, Honasoge K, Dawson R D, Putzky D, Kim G, Puviani M, Chen M, Awari N, Ponomaryov A N, Ilyakov I, Bluschke M, Boschini F, Zonno M, Zhdanovich S, Na M, Christiani G, Logvenov G, Jones D J, Damascelli A, Minola M, Keimer B, Manske D, Wang N, Deinert J C, Kaiser S 2023 Nat. Commun. 14 1343Google Scholar

    [29]

    Cea T, Castellani C, Benfatto L 2016 Phys. Rev. B 93 180507Google Scholar

    [30]

    Matsunaga R, Tsuji N, Makise K, Terai H, Aoki H, Shimano R 2017 Phys. Rev. B 96 020505Google Scholar

    [31]

    Tsuji N, Murakami Y, Aoki H 2016 Phys. Rev. B 94 224519Google Scholar

    [32]

    Cea T, Barone P, Castellani C, Benfatto L 2018 Phys. Rev. B 97 094516Google Scholar

    [33]

    Seibold G, Udina M, Castellani C, Benfatto L 2021 Phys. Rev. B 103 014512Google Scholar

    [34]

    Tsuji N, Nomura Y 2020 Phys. Rev. Res. 2 043029Google Scholar

    [35]

    Gabriele F, Udina M, Benfatto L 2021 Nat. Commun. 12 752Google Scholar

    [36]

    Lorenzana J, Seibold G 2024 Phys. Rev. Lett. 132 026501Google Scholar

    [37]

    Kemper A F, Sentef M A, Moritz B, Freericks J K, Devereaux T P 2015 Phys. Rev. B 92 224517Google Scholar

    [38]

    Krull H, Bittner N, Uhrig G S, Manske D, Schnyder A P 2016 Nat. Commun. 7 11921Google Scholar

    [39]

    Moor A, Volkov A F, Efetov K B 2017 Phys. Rev. Lett. 118 047001Google Scholar

    [40]

    Nakamura S, Iida Y, Murotani Y, Matsunaga R, Terai H, Shimano R 2019 Phys. Rev. Lett. 122 257001Google Scholar

    [41]

    Barlas Y, Varma C M 2013 Phys. Rev. B 87 054503Google Scholar

    [42]

    Schwarz L, Fauseweh B, Tsuji N, Cheng N, Bittner N, Krull H, Berciu M, Uhrig G S, Schnyder A P, Kaiser S, Manske D 2020 Nat. Commun. 11 287Google Scholar

    [43]

    Yang F, Wu M W 2018 Phys. Rev. B 98 094507Google Scholar

    [44]

    Yang F, Wu M W 2019 Phys. Rev. B 100 104513Google Scholar

    [45]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 93 094509Google Scholar

    [46]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 94 115126Google Scholar

    [47]

    Sherman D, Pracht U S, Gorshunov B, Poran S, Jesudasan J, Chand M, Raychaudhuri P, Swanson M, Trivedi N, Auerbach A, Scheffler M, Frydman A, Dressel M 2015 Nat. Phys. 11 188Google Scholar

    [48]

    Kovalev S, Dong T, Shi L Y, Reinhoffer C, Xu T Q, Wang H Z, Wang Y, Gan Z-Z, Germanskiy S, Deinert J C, Ilyakov I, van Loosdrecht P H M, Wu D, Wang N L, Demsar J, Wang Z 2021 Phys. Rev. B 104 L140505Google Scholar

    [49]

    Wang Z X, Xue J R, Shi H K, Jia X Q, Lin T, Shi L Y, Dong T, Wang F, Wang N L 2022 Phys. Rev. B 105 L100508Google Scholar

    [50]

    Chu H, Kim M J, Katsumi K, Kovalev S, Dawson R D, Schwarz L, Yoshikawa N, Kim G, Putzky D, Li Z Z, Raffy H, Germanskiy S, Deinert J C, Awari N, Ilyakov I, Green B, Chen M, Bawatna M, Cristiani G, Logvenov G, Gallais Y, Boris A V, Keimer B, Schnyder A P, Manske D, Gensch M, Wang Z, Shimano R, Kaiser S 2020 Nat. Commun. 11 1793Google Scholar

    [51]

    Cea T, Benfatto L 2014 Phys. Rev. B 90 224515Google Scholar

    [52]

    Schwarz L, Haenel R, Manske D 2021 Phys. Rev. B 104 174508Google Scholar

    [53]

    Feng L W, Cao J Y, Priessnitz T, Dai Y Y, de Oliveira T, Yuan J Y, Oka R, Kim M J, Chen M, Ponomaryov A N, Ilyakov I, Zhang H T, Lv Y B, Mazzotti V, Kim G, Christiani G, Logvenov G, Wu D, Huang Y, Deinert J C, Kovalev S, Kaiser S, Dong T, Wang N L, Chu H 2023 Phys. Rev. B 108 L100504Google Scholar

    [54]

    Yuan J Y, Shi L Y, Yue L, Li B H, Wang Z X, Xu S X, Xu T X, Wang Y, Gan Z H, Chen F C, Lin Z F, Wang X, Jin K, Wang X B, Luo J L, Zhang S J, Wu Q, Liu Q M, Hu T C, Li R S, Zhou X Y, Wu D, Dong T, Wang N L 2024 Sci. Adv. 10 eadg9211Google Scholar

    [55]

    Méasson M A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, Sacuto A 2014 Phys. Rev. B 89 060503Google Scholar

    [56]

    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L, Méasson M-A 2018 Phys. Rev. B 97 094502Google Scholar

    [57]

    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S, Coronado E, Méasson M-A 2019 Phys. Rev. Lett. 122 127001Google Scholar

    [58]

    Glier T E, Tian S, Rerrer M, Westphal L, Lüllau G, Feng L, Dolgner J, Haenel R, Zonno M, Eisaki H, Greven M, Damascelli A, Kaiser S, Manske D, Rübhausen M 2024 arXiv: 2310.08162

    [59]

    Puviani M, Baum A, Ono S, Ando Y, Hackl R, Manske D 2021 Phys. Rev. Lett. 127 197001Google Scholar

    [60]

    Mineev V P, Zhitomirsky M E 2005 Phys. Rev. B 72 014432Google Scholar

    [61]

    Harter J W, Zhao Z Y, Yan J Q, Mandrus D G, Hsieh D 2017 Science 356 295Google Scholar

    [62]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710Google Scholar

    [63]

    Vaswani C, Kang J H, Mootz M, Luo L, Yang X, Sundahl C, Cheng D, Huang C, Kim R H J, Liu Z, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2021 Nat. Commun. 12 258Google Scholar

    [64]

    Luo L, Mootz M, Kang J H, Huang C, Eom K, Lee J W, Vaswani C, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2023 Nat. Phys. 19 201Google Scholar

    [65]

    Katsumi K, Fiore J, Udina M, Romero R, Barbalas D, Jesudasan J, Raychaudhuri P, Seibold G, Benfatto L, Armitage N P 2024 Phys. Rev. Lett. 132 256903Google Scholar

    [66]

    Kim M J, Kovalev S, Udina M, Haenel R, Kim G, Puviani M, Cristiani G, Ilyakov I, de Oliveira T V A G, Ponomaryov A, Deinert J C, Logvenov G, Keimer B, Manske D, Benfatto L, Kaiser S 2024 Sci. Adv. 10 eadi7598Google Scholar

    [67]

    Du Y, Liu G, Ruan W, Fang Z, Watanabe K, Taniguchi T, Liu R H, Li J X, Xi X 2025 Phys. Rev. Lett. 134 066002Google Scholar

    [68]

    Isoyama K, Yoshikawa N, Katsumi K, Wong J, Shikama N, Sakishita Y, Nabeshima F, Maeda A, Shimano R 2021 Commun. Phys. 4 1Google Scholar

    [69]

    Katsumi K, Nishida M, Kaiser S, Miyasaka S, Tajima S, Shimano R 2023 Phys. Rev. B 107 214506Google Scholar

    [70]

    Collado H P O, Lorenzana J, Usaj G, Balseiro C A 2018 Phys. Rev. B 98 214519Google Scholar

    [71]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2021 Phys. Rev. Res. 3 L042023Google Scholar

    [72]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2023 Phys. Rev. Res. 5 023014Google Scholar

    [73]

    Fan B, Cai Z, García-García A M 2024 Phys. Rev. B 110 134307Google Scholar

  • [1] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, doi: 10.7498/aps.73.20240944
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, doi: 10.7498/aps.71.20220011
    [3] 李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰. 中国超导电子学研究及应用进展. 物理学报, doi: 10.7498/aps.70.20202121
    [4] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [5] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, doi: 10.7498/aps.68.20190305
    [6] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, doi: 10.7498/aps.67.20180627
    [7] 张翔宇, 马英翔, 徐春龙, 丁健, 全红娟, 侯兆阳, 石刚, 秦宁, 高当丽. 单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究. 物理学报, doi: 10.7498/aps.67.20172191
    [8] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, doi: 10.7498/aps.67.20172345
    [9] 王建立, 郭亮, 徐先凡, 倪中华, 陈云飞. 晶格振动的超快光谱调控. 物理学报, doi: 10.7498/aps.66.014203
    [10] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, doi: 10.7498/aps.66.087801
    [11] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究. 物理学报, doi: 10.7498/aps.64.094210
    [12] 刘宁, 张新平, 窦菲. 小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究. 物理学报, doi: 10.7498/aps.61.027201
    [13] 徐悦, 金钻明, 李高芳, 张郑兵, 林贤, 马国宏, 程振祥. 锰酸钇薄膜中Mn3+离子dd跃迁的超快光谱学研究. 物理学报, doi: 10.7498/aps.61.177802
    [14] 吴雪炜, 刘晓峻. 钛酸锶纳米颗粒界面层特性的光谱学研究. 物理学报, doi: 10.7498/aps.57.5500
    [15] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, doi: 10.7498/aps.55.3760
    [16] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, doi: 10.7498/aps.50.1956
    [17] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究. 物理学报, doi: 10.7498/aps.50.453
    [18] 闻海虎, 李宏成, 戚振中, 曹效文. 高温超导薄膜中的涨落超导电性及其维度. 物理学报, doi: 10.7498/aps.39.1811
    [19] 李燕飞. 非晶ZrCo合金中的超导涨落和顺电导. 物理学报, doi: 10.7498/aps.39.151
    [20] 李荫远. 论高阶辐射过程Raman效应及其在光谱学中的应用. 物理学报, doi: 10.7498/aps.20.164
计量
  • 文章访问数:  267
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-04-10
  • 上网日期:  2025-04-19

/

返回文章
返回