搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Boltzmann方程的多孔介质中胶体输运模型

陈晓彤 郭照立

引用本文:
Citation:

基于Boltzmann方程的多孔介质中胶体输运模型

陈晓彤, 郭照立
cstr: 32037.14.aps.74.20250288

Boltzmann equation based model of colloidal transport in porous medium

CHEN Xiaotong, GUO ZhaoLi
cstr: 32037.14.aps.74.20250288
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 由于多孔介质结构的随机性, 很难对其内的胶体粒子输运过程进行建模. Boltzmann输运方程为模拟随机空间中胶体粒子的微观动力学提供了一种可靠的途径. 本文通过Chapman-Enskog(CE)分析, 从胶体粒子的Boltzmann方程导出了宏观输运模型. 该模型具有对流-扩散方程形式, 包括依赖粒子速度分布的扩散项、速度延迟项以及反映微观捕获机制的捕获项. 此外, 还给出了3个输运系数的显式表达. 该宏观模型部分解决了传统胶体输运模型的悖论, 并且在特定条件下与以往模型一致.
    The structural randomness of porous medium presents significant challenges for accurately simulating colloidal transport. The Boltzmann transport equation (BTE) provides a reliable way for simulating the microscopic dynamics of colloidal particles in random space.By using the Chapman-Enskog (CE) method, a macroscopic advection-diffusion transport model is derived from the BTE. It includes a diffusion term dependent on the particle velocity distribution, a velocity delay term, and a capture term reflecting the microscopic capture mechanism, which tends to preferentially capture high-speed moving particles. These terms explain the delay and capture effects in colloidal transport. Meanwhile, the explicit expressions of the three transport coefficients are presented to provide a quantitative basis for using the model.The model is effective at small mixing filtration coefficients λl. By comparing the outlet concentration profiles of different models, the influences of this mechanism on the advection velocity delay and capture efficiency are elucidated. The model solves some of the paradoxes of traditional colloidal transport models, and under specific conditions, it is consistent with previous models.
      通信作者: 郭照立, zlguo@hust.edu.cn
    • 基金项目: 华中科技大学交叉研究支持计划(批准号: 2023JCYJ002)资助的课题.
      Corresponding author: GUO ZhaoLi, zlguo@hust.edu.cn
    • Funds: Project supported by the Interdisciplinary Research Support Program of Huazhong University of Science and Technology (Grant No. 2023JCYJ002).
    [1]

    Luna M, Gastone F, Tosco T, Sethi R, Velimirovic M, Gemoets J, Muyshondt R, Sapionet H, Klaas N, Bastiaens L 2015 J. Contam. Hydrol. 181 46Google Scholar

    [2]

    Tosco T, Gastone F, Sethi R 2014 J. Contam. Hydrol. 166 34Google Scholar

    [3]

    Fakhreddine S, Prommer H, Gorelick S M, Dadakis J, Fendorf S 2020 Environ. Sci. Technol. 54 8728Google Scholar

    [4]

    Boccardo G, Sethi R, Marchisio D L 2019 Chem. Eng. Sci. 198 290Google Scholar

    [5]

    杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞 2014 物理学报 63 048102Google Scholar

    Yang X Q, Hu Y, Zhang J L, Wang Y Q, Pei C M, Liu F 2014 Acta Phys. Sin. 63 048102Google Scholar

    [6]

    Salimi S, Ghalambor A 2011 Energies 4 1728Google Scholar

    [7]

    Winter C L, Tartakovsky D M 2002 Water Resour. Res. 38 23-1Google Scholar

    [8]

    Russell T, Dinariev O Y, Pessoa Rego L A, Bedrikovetsky P 2021 Water Resour. Res. 57 e2020WR029557Google Scholar

    [9]

    Zou Z K, Yu L, Li Y L, Niu S Y, Fan L L, Luo W B, Li W 2023 Water 15 2193Google Scholar

    [10]

    Shapiro A A 2024 Phys. Fluids 36 027118Google Scholar

    [11]

    Panfilov M, Rasoulzadeh M 2013 Comput. Geosci. 17 269Google Scholar

    [12]

    Shapiro A A 2022 Chem. Eng. Sci. 248 117247Google Scholar

    [13]

    Herzig J P, Leclerc D M, Goff P L 1970 Ind. Eng. Chem. 62 8

    [14]

    Bedrikovetsky P 2008 Transp. Porous Med. 75 335Google Scholar

    [15]

    Bedrikovetsky P, Siqueira A G, de Souza A L S, Altoé J E, Shecaira F 2006 J. Pet. Sci. Eng. 51 68Google Scholar

    [16]

    Bradford S A, Leij F J 2018 Chem. Eng. Sci. 192 972Google Scholar

    [17]

    Molnar I L, Pensini E, Asad M A, Mitchell C A, Nitsche L C, Pyrak-Nolte L J, Miño G L, Krol M M 2019 Transp. Porous Med. 130 129Google Scholar

    [18]

    Zhang H, Malgaresi G V C, Bedrikovetsky P 2018 Int. J. Non - Linear Mech. 105 27Google Scholar

    [19]

    Arns C H 2004 Physica A 339 159Google Scholar

    [20]

    Arns C H, Knackstedt M A, Martys N S 2005 Phys. Rev. E 72 046304Google Scholar

    [21]

    Russell T, Bedrikovetsky P 2021 Phys. Fluids 33 053306Google Scholar

    [22]

    Russell T, Bedrikovetsky P 2023 J. Comput. Appl. Math. 422 114896Google Scholar

    [23]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [24]

    Grad H 1963 Phys. Fluids 6 147Google Scholar

    [25]

    Bradford S A, Yates S R, Bettahar M, Simunek J 2002 Water Resour. Res. 38 63-1Google Scholar

    [26]

    Tufenkji N, Elimelech M 2004 Environ. Sci. Technol. 38 529Google Scholar

    [27]

    Andrade J S, Araújo A D, Vasconcelos T F, Herrmann H J 2008 Eur. Phys. J. B 64 433Google Scholar

    [28]

    Wang H Q, Lacroix M, Masséi N, Dupont J P 2000 C. R. Acad. Sci. - Ser. IIA - Earth Planet. Sci. 331 97Google Scholar

    [29]

    Yang Y, Bedrikovetsky P 2017 Transp. Porous Med. 119 351Google Scholar

    [30]

    Malgaresi G, Collins B, Alvaro P, Bedrikovetsky P 2019 Chem. Eng. J. 375 121984Google Scholar

    [31]

    Hashemi A, Nguyen C, Loi G, Khazali N, Yutong Y, Dang-Le B, Russell T, Bedrikovetsky P 2023 Chem. Eng. J. 474 145436Google Scholar

  • 图 1  孔隙尺度下多孔介质中粒子所受作用力和捕获机制

    Fig. 1.  Forces and capture mechanisms on particles in porous media at the pore scale.

    图 2  孔隙尺度下粒子的速度分布示意图

    Fig. 2.  Schematic diagram of the velocity distribution of particles at the pore scale.

    图 3  多孔介质中粒子输运和捕获示意图

    Fig. 3.  Schematic diagram of particle transport and capture in porous media.

    图 4  混合矩$ {\bar R_{ij}} $与$ {C_v} $的关系

    Fig. 4.  Relationship between mixing moments $ {\bar R_{ij}} $ and $ {C_v} $

    图 5  本模型和R-平均模型(average model)的$ 1/P{e^*} $比较 (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = 1.19\left( {\alpha = 0.8} \right) $

    Fig. 5.  Comparison of the parameter $ 1/P{e^*} $ between the present model and the average model: (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = $$ 1.19\left( {\alpha = 0.8} \right) $.

    图 6  本模型和R-平均模型(average model)的延迟数θ (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = 1.19\left( {\alpha = 0.8} \right) $

    Fig. 6.  Comparison of the parameter θ between the present model and the average model: (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = $$ 1.19\left( {\alpha = 0.8} \right) $.

    图 7  本模型和R-平均模型(average model)的参数$ \varPsi = \varOmega /\left( {\lambda L} \right) $比较 (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = 1.19\left( {\alpha = 0.8} \right) $

    Fig. 7.  Comparison of the parameter $ \varPsi = \varOmega /\left( {\lambda L} \right) $ between the present model and the average model: (a) $ {C_v} = 0.1\left( {\alpha = 1} \right) $; (b) $ {C_v} = 1.19\left( {\alpha = 0.8} \right) $.

    图 8  本文模型的宏观系数θ对$ {C_v} $和$ \lambda l $的敏感性分析 (a) $ {C_v} \in (0, 0.1],\; \lambda l \in [0, 200] $; (b) $ {C_v} \in (0, 50],\; \lambda l \in [0, 0.1] $

    Fig. 8.  Sensitivity analysis of the macroscopic coefficient θ of the present model to $ {C_v} $ and $ \lambda l $: (a) $ {C_v} \in (0, 0.1], \;\lambda l \in [0, 200] $; (b) $ {C_v} \in (0, 50], \;\lambda l \in [0, 0.1] $.

    图 9  本文模型的宏观系数$ \varPsi = \varOmega /\left( {\lambda L} \right) $对$ {C_v} $和$ \lambda l $的敏感性分析 (a) $ {C_v} \in (0, 0.1],\; \lambda l \in [0, 200] $; (b) $ {C_v} \in (0, 50], \;\lambda l \in [0, 0.1] $

    Fig. 9.  Sensitivity analysis of the macroscopic coefficient $ \varPsi = \varOmega /\left( {\lambda L} \right) $ of the present model to $ {C_v} $ and $ \lambda l $: (a) $ {C_v} \in $$ (0, 0.1],\; \lambda l \in [0, 200] $; (b) $ {C_v} \in (0, 50], \;\lambda l \in [0, 0.1] $.

    图 10  从微观参数对$ \left( {\lambda , l, {C_v}} \right) $计算宏观参数对$ \left( {P{e^{ - 1}}, \theta , \varOmega } \right) $的结果 (a) $ \alpha = 1 $; (b) $ \alpha < 1 $

    Fig. 10.  Results of calculating the macroscopic parameter for $ \left( {P{e^{ - 1}}, \theta , \varOmega } \right) $ from the microscopic parameter for $ \left( {\lambda , l, {C_v}} \right) $: (a) $ \alpha = 1 $; (b) $ \alpha < 1 $.

    图 11  三个微尺度过滤系数模型(平均速度的正负代表粒子运动方向)

    Fig. 11.  Three microscopic filtration coefficient models (the positive and negative values of the average velocity represent the direction of particle motion).

    图 12  三种捕获机制下的宏观系数关于平均速度u的灵敏度研究($ s = {10^{ - 2}},\, l = {10^{ - 6}}, \,\alpha = 0.5—1 $) (a) $ P{e^{ - 1}} $; (b) $ \theta $; (c) $ \varOmega $

    Fig. 12.  Sensitivity analysis of the macroscopic coefficient under three capture mechanisms to the average velocity u $( s = {10^{ - 2}}, \;l = {10^{ - 6}}, \;\alpha = 0.5-1 $): (a) $ P{e^{ - 1}} $; (b) θ; (c) Ω.

    图 13  粒子速度为正值时本文模型与传统模型在$ \lambda l $很小时的系数比较 (a) $ P{e^{ - 1}} $; (b) $ \theta $; (c) $ \varOmega /\left( {\lambda L} \right) $

    Fig. 13.  Comparison of the coefficients between the present model and traditional models at very small $ \lambda l $ when the particle velocities are positive: (a) $ P{e^{ - 1}} $; (b) $ \theta $; (c) $ \varOmega /\left( {\lambda L} \right) $.

    图 14  不同模型的出口浓度曲线比较 (a) $ \lambda L = 5 $; (b) $ \lambda L = 10 $, 其他参数为$ {C_v} = 0.1, \;l/L = {10^{ - 2}} $

    Fig. 14.  Comparison of outlet concentration profiles for different models: (a) $ \lambda L = 5 $; (b) $ \lambda L = 10 $, other parameters are $ {C_v} = 0.1,\; l/L = {10^{ - 2}} $.

    图 15  不同模型的出口浓度曲线比较 (a) $ \lambda L = 5 $; (b) $ \lambda L = 10 $, 其他参数为$ {C_v} = 1.19,\; l/L = {10^{ - 2}} $

    Fig. 15.  Comparison of outlet concentration profiles for different models: (a) $ \lambda L = 5 $; (b) $ \lambda L = 10 $, other parameters are $ {C_v} = 1.19,\;l/L = {10^{ - 2}} $.

    表 1  宏观系数的显式表达

    Table 1.  Explicit expression of macroscopic coefficients.

    α = 1 α < 1
    $ {{Pe}}^{-1} $ $ {({l}{/}{L}){{C}}_{{v}}^{2}}_{}^{} $ $ ({l}{/}{L}){{C}}_{{v}}^{2} $
    θ $ 2{ \lambda l}{{C}}_{{v}}^{2} $ $ 2{ \lambda l}\left\{\left(1+{{C}}_{{v}}^{2}\right)\left[2\varPhi\left(\displaystyle \frac{1}{{{C}}_{{v}}}\right)-1\right]+\displaystyle \frac{2{{C}}_{{v}}}{\sqrt{{2\pi}}}\text{exp}\left(-\frac{1}{2{{C}}_{{v}}^{2}}\right)\right\} $
    Ω $ \lambda{ L}{(1}-{ \lambda l}{{C}}_{{v}}^{2}) $ $\lambda L \left[ \left[ 2\varPhi\left( \dfrac{1}{C_v} \right) - 1 \right] + \dfrac{2C_v}{\sqrt{2\pi}} \exp\left( -\dfrac{1}{2C_v^2} \right) - \lambda l \left( C_v^2 + 1 - \left\{ \left[ 2\varPhi\left( \dfrac{1}{C_v} \right) - 1 \right] + \dfrac{2C_v}{\sqrt{2\pi}} \exp\left( -\dfrac{1}{2C_v^2} \right) \right\}^2 \right) \right] $
    注:$ \varPhi \left( x \right) = \displaystyle \int_{ - \infty }^x {\frac{{\exp \left( { - {y^2}/2} \right)}}{{\sqrt {2{\pi{}}} }}} {\text{d}}y. $
    下载: 导出CSV
  • [1]

    Luna M, Gastone F, Tosco T, Sethi R, Velimirovic M, Gemoets J, Muyshondt R, Sapionet H, Klaas N, Bastiaens L 2015 J. Contam. Hydrol. 181 46Google Scholar

    [2]

    Tosco T, Gastone F, Sethi R 2014 J. Contam. Hydrol. 166 34Google Scholar

    [3]

    Fakhreddine S, Prommer H, Gorelick S M, Dadakis J, Fendorf S 2020 Environ. Sci. Technol. 54 8728Google Scholar

    [4]

    Boccardo G, Sethi R, Marchisio D L 2019 Chem. Eng. Sci. 198 290Google Scholar

    [5]

    杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞 2014 物理学报 63 048102Google Scholar

    Yang X Q, Hu Y, Zhang J L, Wang Y Q, Pei C M, Liu F 2014 Acta Phys. Sin. 63 048102Google Scholar

    [6]

    Salimi S, Ghalambor A 2011 Energies 4 1728Google Scholar

    [7]

    Winter C L, Tartakovsky D M 2002 Water Resour. Res. 38 23-1Google Scholar

    [8]

    Russell T, Dinariev O Y, Pessoa Rego L A, Bedrikovetsky P 2021 Water Resour. Res. 57 e2020WR029557Google Scholar

    [9]

    Zou Z K, Yu L, Li Y L, Niu S Y, Fan L L, Luo W B, Li W 2023 Water 15 2193Google Scholar

    [10]

    Shapiro A A 2024 Phys. Fluids 36 027118Google Scholar

    [11]

    Panfilov M, Rasoulzadeh M 2013 Comput. Geosci. 17 269Google Scholar

    [12]

    Shapiro A A 2022 Chem. Eng. Sci. 248 117247Google Scholar

    [13]

    Herzig J P, Leclerc D M, Goff P L 1970 Ind. Eng. Chem. 62 8

    [14]

    Bedrikovetsky P 2008 Transp. Porous Med. 75 335Google Scholar

    [15]

    Bedrikovetsky P, Siqueira A G, de Souza A L S, Altoé J E, Shecaira F 2006 J. Pet. Sci. Eng. 51 68Google Scholar

    [16]

    Bradford S A, Leij F J 2018 Chem. Eng. Sci. 192 972Google Scholar

    [17]

    Molnar I L, Pensini E, Asad M A, Mitchell C A, Nitsche L C, Pyrak-Nolte L J, Miño G L, Krol M M 2019 Transp. Porous Med. 130 129Google Scholar

    [18]

    Zhang H, Malgaresi G V C, Bedrikovetsky P 2018 Int. J. Non - Linear Mech. 105 27Google Scholar

    [19]

    Arns C H 2004 Physica A 339 159Google Scholar

    [20]

    Arns C H, Knackstedt M A, Martys N S 2005 Phys. Rev. E 72 046304Google Scholar

    [21]

    Russell T, Bedrikovetsky P 2021 Phys. Fluids 33 053306Google Scholar

    [22]

    Russell T, Bedrikovetsky P 2023 J. Comput. Appl. Math. 422 114896Google Scholar

    [23]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [24]

    Grad H 1963 Phys. Fluids 6 147Google Scholar

    [25]

    Bradford S A, Yates S R, Bettahar M, Simunek J 2002 Water Resour. Res. 38 63-1Google Scholar

    [26]

    Tufenkji N, Elimelech M 2004 Environ. Sci. Technol. 38 529Google Scholar

    [27]

    Andrade J S, Araújo A D, Vasconcelos T F, Herrmann H J 2008 Eur. Phys. J. B 64 433Google Scholar

    [28]

    Wang H Q, Lacroix M, Masséi N, Dupont J P 2000 C. R. Acad. Sci. - Ser. IIA - Earth Planet. Sci. 331 97Google Scholar

    [29]

    Yang Y, Bedrikovetsky P 2017 Transp. Porous Med. 119 351Google Scholar

    [30]

    Malgaresi G, Collins B, Alvaro P, Bedrikovetsky P 2019 Chem. Eng. J. 375 121984Google Scholar

    [31]

    Hashemi A, Nguyen C, Loi G, Khazali N, Yutong Y, Dang-Le B, Russell T, Bedrikovetsky P 2023 Chem. Eng. J. 474 145436Google Scholar

  • [1] 赵兹卿, 严裕, 娄钦. 大密度比气泡在多孔介质通道内上升行为的三维介观数值模拟. 物理学报, 2025, 74(5): 054701. doi: 10.7498/aps.74.20241678
    [2] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [5] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [6] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [7] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [8] 仇浩淼, 夏唐代, 何绍衡, 陈炜昀. 流体/准饱和多孔介质中伪Scholte波的传播特性. 物理学报, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [9] 彭傲平, 李志辉, 吴俊林, 蒋新宇. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703. doi: 10.7498/aps.66.204703
    [10] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [11] 贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐. 应用粒子图像测试技术测量球床多孔介质单相流动的流场. 物理学报, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [12] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [13] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [14] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [15] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [16] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [17] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [18] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [19] 赵 颖, 季仲贞, 冯 涛. 用格子Boltzmann模型模拟垂直平板间的热对流. 物理学报, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  328
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-06
  • 修回日期:  2025-04-06
  • 上网日期:  2025-04-24

/

返回文章
返回