搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quincke活性胶体体系中吸引力对集体行为的影响

杜海婷 周晓怡 倪琦英 陈康 田文得 张天辉

引用本文:
Citation:

Quincke活性胶体体系中吸引力对集体行为的影响

杜海婷, 周晓怡, 倪琦英, 陈康, 田文得, 张天辉

Influence of attractive interactions on collective behavior in Quincke active colloidal systems

DU Haiting, ZHOU Xiaoyi, NI Qiying, CHEN Kang, TIAN Wende, ZHANG Tianhui
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 活性物质中的集体行为已被广泛研究. 然而, 活性个体间的吸引力对集体运动模式的影响还没有相关研究. 本研究发现, 在Quincke活性胶体体系, 通过增强电液流(EHD)效应诱导的长程吸引力, 速度对齐效应得到增强, 并在极性流体内部诱发密度相分离, 形成极性团簇, 破坏极性有序相的空间均匀性. 这是已有的实验观测中没有的. 而在排斥主导的活性体系, 极性流体空间均匀分布. 我们的研究结果表明活性个体间的吸引力会显著改变活性体系的微观和宏观动力学行为.
    Active matter can form various collective motions. In dry and repulsive systems, a uniform polar fluid emerges in the presence of an aligning mechanism. Theoretical studies have shown that in active systems with attractive interactions, particles can achieve spontaneous velocity alignment and form clusters through the synergistic effect of self-propulsion and attraction. However, so far, the influence of attractions on collective behavior has not been well addressed experimentally. In this work, an electric-field driven Quincke system, where an electrohydrodynamic (EHD) long-range attraction is present, is used to investigate the influence of attraction on the collective behavior. It is found that the long-range attraction can significantly increase the interaction time during collision, thereby enhancing velocity alignment. The aligned particles can form dynamic polar clusters. Moreover, in the presence of a long-range attraction, a uniform polar fluid is unstable: density fluctuation leads to denser polar clusters which share the same direction of collective motion with the polar fluid. Our findings show that the attraction between active individuals can significantly change the microscopic and macroscopic dynamics of active systems and provide insights into understanding chemotactic attraction phenomena in biological systems.
  • 图 1  两粒子(P1, P2)的碰撞过程($ E = 1.20{E_{\text{c}}} $) (a) 实验装置及原理图; (b) 湿AOT导电溶液中粒子碰撞过程; (c)干AOT导电溶液中粒子碰撞过程. (b), (c)顶部: 粒子之间的距离随时间的变化. 插图: 对齐过程中的轨迹与速度变化. 中间: 两个粒子速度方向之间的角度随时间的变化. 底部: 两粒子速度变化

    Fig. 1.  Collision dynamics between two particles ($ E = 1.20{E_{\text{c}}} $): (a) Schematic of the experimental setup and Quincke rolling; (b) particle collision process in wet AOT conductive solution; (c) particle collision process in dry AOT conductive solution. (b), (c) Top: Distance between the particles as a function of time. Inset: Speed and trajectories in an aligning process. Middle: The angle between the two orientations as a function of time. Bottom: Speed evolution in pair aligning.

    图 2  (a) 排斥力占主导时的无序气体 ($ E = 1.20{E_{\text{c}}} $); (b)—(d) 吸引力主导下形成的团簇及其消散过程($ E = 1.20{E_{\text{c}}} $); (e)—(h)对应于图(a)—(d)的速度方向着色图, 左下角圆盘为方向色标. 图中标尺为$100{\text{ μm}}$

    Fig. 2.  (a) Repulsion-dominated disordered gas state ($ E = 1.20{E_{\text{c}}} $); (b)–(d) attraction-driven cluster formation and subsequent dissipation($ E = 1.20{E_{\text{c}}} $); (e)–(h) velocity direction color maps corresponding to panels (a)–(d). The direction color key is shown in the lower-left disk. Scale bar: $100{\text{ μm}}$.

    图 3  吸引Quincke体系的亚临界行为 (a) $ E = 0.9{E_{\text{c}}} $时的实验原图; (b)对应于图(a)的速度彩图, 图中白色粒子为静止不动的粒子, 右侧为速度大小色标. 图中标尺为$100{\text{ μm}}$

    Fig. 3.  Subcritical behavior of the attraction-driven Quincke system: (a) Raw experimental image at $ E = 0.9{E_{\text{c}}} $; (b) velocity color map corresponding to Figure (a), white particles denote stationary colloids, and the velocity color scale is shown on the right. Scale bar: $100{\text{ μm}}$.

    图 4  集体运动 (a) 排斥力占主导时的极性流体($ E = $$ 1.30{E_{\text{c}}} $); (b) EHD吸引力占主导时的极性团簇 ($ E = 1.30{E_{\text{c}}} $); (c), (d)对应于图(a)和图(b)的速度方向着色图, 左下角圆盘为方向色标. 图中标尺为$100{\text{ μm}}$

    Fig. 4.  Collective motion: (a) Repulsion-dominated polar fluid ($ E = 1.30{E_{\text{c}}} $); (b) EHD attraction-driven polar cluster ($ E = 1.30{E_{\text{c}}} $); (c), (d) velocity direction color maps corresponding to Figure (a) and Figure (b). The directional color key is shown in the lower-left disk. Scale bar: $100{\text{ μm}}$.

  • [1]

    Das M, Schmidt C F, Murrell M 2020 Soft Matter 16 7185Google Scholar

    [2]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71Google Scholar

    [3]

    Deutsch A, Friedl P, Preziosi L, Theraulaz G 2020 Philos. Trans. R. Soc. London, Ser. B 375 20190377Google Scholar

    [4]

    Dombrowski C, Cisneros L, Chatkaew S, Goldstein R E, Kessler J O 2004 Phys. Rev. Lett. 93 098103Google Scholar

    [5]

    Zhang H P, Be'er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. U. S. A. 107 13626Google Scholar

    [6]

    Chen X, Yang X, Yang M C, Zhang H P 2015 Europhys. Lett. 111 54002Google Scholar

    [7]

    Cavagna A, Giardina I 2014 Annu. Rev. Condens. Matter Phys. 5 183Google Scholar

    [8]

    Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M 2010 Proc. Natl. Acad. Sci. U. S. A. 107 11865Google Scholar

    [9]

    Katz Y, Tunstrom K, Ioannou C C, Huepe C, Couzin I D 2011 Proc. Natl. Acad. Sci. U. S. A. 108 18720Google Scholar

    [10]

    Shimoyama N, Sugawara K, Mizuguchi T, Hayakawa Y, Sano M 1996 Phys. Rev. Lett. 76 3870Google Scholar

    [11]

    Baglietto G, Albano E V 2009 Comput. Phys. Commun. 180 527Google Scholar

    [12]

    Vicsek T, Czirok A, Ben-Jacob E, Cohen I I, Shochet O 1995 Phys. Rev. Lett. 75 1226Google Scholar

    [13]

    Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219Google Scholar

    [14]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T 2013 Phys. Rev. Lett. 110 238301Google Scholar

    [15]

    Blair D L, Neicu T, Kudrolli A 2003 Phys. Rev. E 67 031303Google Scholar

    [16]

    Deseigne J, Dauchot O, Chaté H 2010 Phys. Rev. Lett. 105 098001Google Scholar

    [17]

    陈健丽, 李佳健, 艾保全 2025 物理学报 74 060501Google Scholar

    Chen J L, Li J J, Ai B Q 2025 Acta Phys. Sin. 74 060501Google Scholar

    [18]

    Bricard A, Caussin J B, Desreumaux N, Dauchot O, Bartolo D 2013 Nature 503 95Google Scholar

    [19]

    Karani H, Pradillo G E, Vlahovska P M 2019 Phys. Rev. Lett. 123 208002Google Scholar

    [20]

    Lu S Q, Zhang B Y, Zhang Z C, Shi Y, Zhang T H 2018 Soft Matter 14 5092Google Scholar

    [21]

    Pradillo G E, Karani H, Vlahovska P M 2019 Soft Matter 15 6564Google Scholar

    [22]

    Bricard A, Caussin J B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nat. Commun. 6 7470Google Scholar

    [23]

    Mauleon-Amieva A, Mosayebi M, Hallett J E, Turci F, Liverpool T B, van Duijneveldt J S, Royall C P 2020 Phys. Rev. E 102 032609

    [24]

    Boymelgreen A, Schiffbauer J, Khusid B, Yossifon G 2022 Curr. Opin. Colloid Interface Sci. 60 101603Google Scholar

    [25]

    Das D, Saintillan D 2013 Phys. Rev. E 87 043014Google Scholar

    [26]

    Ristenpart W D, Aksay I A, Saville D A 2007 Langmuir 23 4071Google Scholar

    [27]

    Liu Z T, Shi Y, Zhao Y, Chate H, Shi X Q, Zhang T H 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2104724118Google Scholar

    [28]

    Michor F, Iwasa Y, Nowak M A 2004 Nat. Rev. Cancer 4 197Google Scholar

    [29]

    Vishwakarma M, Thurakkal B, Spatz J P, Das T 2020 Philos. Trans. R. Soc. London, Ser. B 375 20190391Google Scholar

    [30]

    Haga H, Irahara C, Kobayashi R, Nakagaki T, Kawabata K 2005 Biophys. J. 88 2250Google Scholar

    [31]

    Hsu M F, Dufresne E R, Weitz D A 2005 Langmuir 21 4881Google Scholar

  • [1] 郭思航, 杨光宇, 孟国庆, 王英英, 潘俊星, 张进军. 光场调控的活性粒子体系的动态自组装. 物理学报, doi: 10.7498/aps.74.20241556
    [2] 陈健丽, 李佳健, 艾保全. 具有吸引作用的活性布朗粒子的团簇行为和自发速度对齐. 物理学报, doi: 10.7498/aps.74.20241746
    [3] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀. 物理学报, doi: 10.7498/aps.72.20230534
    [4] 吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, doi: 10.7498/aps.66.110501
    [5] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, doi: 10.7498/aps.65.090501
    [6] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究. 物理学报, doi: 10.7498/aps.65.014502
    [7] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究. 物理学报, doi: 10.7498/aps.61.054306
    [8] 唐海燕, 陈恒杰, 程新路, 周学平. XF3 (X=N,P,As)价层电离势的运动方程耦合团簇理论计算. 物理学报, doi: 10.7498/aps.60.053301
    [9] 孟庆苗, 苏九清, 蒋继建. 加速运动动态黑洞的瞬时辐出度. 物理学报, doi: 10.7498/aps.56.5077
    [10] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, doi: 10.7498/aps.55.3433
    [11] 郭建军, 杨继先, 迭 东, 于桂凤, 蒋 刚. Pd-Y微团簇的结构与性质研究. 物理学报, doi: 10.7498/aps.54.3571
    [12] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算. 物理学报, doi: 10.7498/aps.54.5126
    [13] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, doi: 10.7498/aps.53.2029
    [14] 贺晗, 赵峥. 直线加速运动动态黑洞的熵. 物理学报, doi: 10.7498/aps.51.2661
    [15] 陈方培. 引力理论的场方程与自由粒子运动方程的一般形式. 物理学报, doi: 10.7498/aps.42.1395
    [16] 李光仪. Poincaré引力规范场和1/2自旋粒子的运动. 物理学报, doi: 10.7498/aps.30.722
    [17] 孙鑫. 表面电荷层的集体激发. 物理学报, doi: 10.7498/aps.27.752
    [18] 徐躬耦, 王顺金, 刘敦桓, 杨亚天, 毛铭德. 生成坐标方法与原子核集体运动(Ⅱ)——偶-偶原子核的多极激发和对激发. 物理学报, doi: 10.7498/aps.25.226
    [19] 陈金全. 原子核的集体运动和准粒子无规位相近似. 物理学报, doi: 10.7498/aps.24.281
    [20] 程开甲. 电子集体振动理论. 物理学报, doi: 10.7498/aps.14.244
计量
  • 文章访问数:  230
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-04-02
  • 上网日期:  2025-04-08

/

返回文章
返回