搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲应变梯度作用下铁电三层膜畴翻转的相场模拟研究

郭常青 杨乐陶 王静 黄厚兵

引用本文:
Citation:

弯曲应变梯度作用下铁电三层膜畴翻转的相场模拟研究

郭常青, 杨乐陶, 王静, 黄厚兵
cstr: 32037.14.aps.74.20250334

Phase-field simulation of domain switching in ferroelectric trilayer films under bending-induced strain gradient

GUO Changqing, YANG Letao, WANG Jing, HUANG Houbing
cstr: 32037.14.aps.74.20250334
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 柔性铁电材料在可穿戴电子领域具有重要应用前景, 然而其动态弯曲过程中应变梯度与极化翻转的力-电耦合物理机制仍缺乏系统性的研究. 本研究基于相场模拟, 系统地探讨了(SrTiO3)10/(PbTiO3)10/(SrTiO3)10三层异质膜在U型和N型弯曲下的畴结构演化及其宏观电学响应. 研究表明, 通过改变弯曲变形方向可以产生方向相反的挠曲电场, 导致电滞回线发生相应方向的偏移. 此外, 弯曲应变和应变梯度可驱动极性涡旋态与单畴态之间的拓扑相变, 其中界面静电能、弹性约束及梯度能的协同作用对拓扑结构的稳定性起关键作用. 本研究揭示了弯曲变形通过力-电耦合效应实现畴构型与电响应的定向调控机制, 为高密度柔性存储器和能量收集器件的跨尺度设计奠定了理论基础, 并进一步拓展了拓扑态工程在柔性电子领域的应用前景.
    Flexible ferroelectric materials possess considerable potentials for wearable electronics and bio-inspired devices, yet their mechano-electric coupling mechanisms under dynamic bending conditions remain incompletely understood. In his work, the effects of bending deformation on domain structures and macroscopic ferroelectric responses in (SrTiO3)10/(PbTiO3)10/(SrTiO3)10 flexible ferroelectric trilayer films are systematically investigated using phase-field simulations. By constructing computational models for upward-concave (U-shaped) and downward-concave (N-shaped) bending configurations, the strain distribution and its regulation mechanism on polarization patterns under different curvature radii are analyzed. The results reveal distinct strain gradients across bending modes: U-shaped bending induces compressive strain in the upper layer and tensile strain in the lower layer, generating a negative out-of-plane strain gradient. Conversely, N-shaped bending reverses this strain distribution. Such inhomogeneous strains drive significant polarization reconfiguration within the PTO layer. At a moderate curvature (large R), the system retains stable vortex-antivortex pairs. Reducing bending radius (smaller R) promotes divergent topological transitions—U-shaped bending facilitates vortex pair transformation into zigzag-like domains, while N-shaped bending drives vortex-to-out-of-plane c-domain evolution. Notably, bending-induced strain gradients impose transverse flexoelectric fields that markedly change trilayer hysteresis loops. U-shaped bending introduces a negative flexoelectric field, shifting loops rightward with maximum polarization (Pmax) decreasing. In contrast, N-shaped bending generates a positive field, enhancing Pmax via leftward loop shifting. The polarization switching analysis under electric field further demonstrates bending-mediated control of domain evolution pathway and reversal dynamics. These findings not only elucidate profound bending effects on flexible ferroelectrics’ domain architectures and functional properties but also provide theoretical guidance for designing strain-programmable ferroelectric memories, adaptive sensors, and neuromorphic electronics.
      通信作者: 黄厚兵, hbhuang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92463306, 52372100, 52472119)和北京市自然科学基金(批准号: 2242057)资助的课题.
      Corresponding author: HUANG Houbing, hbhuang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92463306, 52372100, 52472119) and the Natural Science Foundation of Beijing, China (Grant No. 2242057).
    [1]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [2]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [3]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [4]

    Ramesh R, Aggarwal S, Auciello O 2001 Mater. Sci. Eng., R 32 191Google Scholar

    [5]

    R. Bowen C, A. Kim H M, Weaver P, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [6]

    Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2019 Adv. Funct. Mater. 29 1807196Google Scholar

    [7]

    Singh A, Monga S, Sharma N, Sreenivas K, Katiyar R S 2022 J. Asian Ceram. Soc. 10 275Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. Technol. 11 1323Google Scholar

    [9]

    Wang W, Li J, Liu H, Ge S 2021 Adv. Sci. 8 2003074Google Scholar

    [10]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [11]

    Park J S, Jung S Y, Kim D H, Park J H, Jang H W, Kim T G, Baek S H, Lee B C 2023 Microsyst. Nanoeng. 9 1Google Scholar

    [12]

    Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O’Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar

    [13]

    Yao M, Cheng Y, Zhou Z, Liu M 2020 J. Mater. Chem. C 8 14Google Scholar

    [14]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [15]

    Jia X, Guo R, Tay B K, Yan X 2022 Adv. Funct. Mater. 32 2205933Google Scholar

    [16]

    Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S, Park C 2009 J. Appl. Phys. 106 024108Google Scholar

    [17]

    Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [18]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [19]

    Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [20]

    Peng B, Peng R C, Zhang Y Q, Dong G, Zhou Z, Zhou Y, Li T, Liu Z, Luo Z, Wang S, Xia Y, Qiu R, Cheng X, Xue F, Hu Z, Ren W, Ye Z G, Chen L Q, Shan Z, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [21]

    Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T 2022 Nano Lett. 22 2859Google Scholar

    [22]

    Cai S, Lun Y, Ji D, Lv P, Han L, Guo C, Zang Y, Gao S, Wei Y, Gu M, Zhang C, Gu Z, Wang X, Addiego C, Fang D, Nie Y, Hong J, Wang P, Pan X 2022 Nat. Commun. 13 5116Google Scholar

    [23]

    Wang J, Liu Z, Wang Q, Nie F, Chen Y, Tian G, Fang H, He B, Guo J, Zheng L, Li C, Lü W, Yan S 2024 Adv. Sci. 11 2401657Google Scholar

    [24]

    Tanwani M, Gupta P, Powar S, Das S 2025 Small 21 2405688Google Scholar

    [25]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [26]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [27]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [28]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [29]

    Lun Y, Wang X, Kang J, Ren Q, Wang T, Han W, Gao Z, Huang H, Chen Y, Chen L Q, Fang D, Hong J 2023 Adv. Mater. 35 2302320Google Scholar

    [30]

    Guo C, Yang H, Dong S, Tang S, Wang J, Wang X, Huang H 2024 Adv. Electron. Mater. 10 2400001Google Scholar

    [31]

    Guo C, Wang J, Huang H 2024 Appl. Phys. Lett. 125 062903Google Scholar

    [32]

    Zhou M J, Peng K, Tan Y Z, Yang T N, Chen L Q, Nan C W 2025 Acta Mater. 288 120805Google Scholar

    [33]

    Li Q, Nelson C T, Hsu S L, et al. 2017 Nat. Commun. 8 1468Google Scholar

    [34]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [35]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [36]

    高荣贞, 王静, 王俊升, 黄厚兵 2020 物理学报 69 217801Google Scholar

    Gao R Z, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 217801Google Scholar

    [37]

    梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥 2021 物理学报 70 044202Google Scholar

    Liang D S, Huang H B, Zhao Y N, Liu Z H, Wang H Y, Ma X Q 2021 Acta Phys. Sin. 70 044202Google Scholar

    [38]

    Li Y, Zatterin E, Conroy M, et al. 2022 Adv. Mater. 34 2106826Google Scholar

  • 图 1  (a) 铁电三层膜的两种弯曲示意图, 这里R是弯曲曲率的半径; (b) 铁电三层膜在U型弯曲和N型弯曲下的面内应变εxx分布; (c) 铁电三层膜在U型弯曲和N型弯曲下的应变梯度εxx,z分布

    Fig. 1.  (a) Schematic diagrams of the two bending configurations of the ferroelectric trilayer film, where R is the radius of curvature; (b) in-plane strain εxx of the ferroelectric trilayer film under U-shaped and N-shaped bending; (c) strain gradient εxx,z of the ferroelectric trilayer film under U-shaped and N-shaped bending.

    图 2  STO/PTO/STO三层膜在不同U型弯曲半径下畴结构演化行为

    Fig. 2.  Domain evolution behavior in STO/PTO/STO trilayer films under different U-shaped bending radii.

    图 3  STO/PTO/STO三层膜在不同N型弯曲半径下畴结构演化行为

    Fig. 3.  Domain evolution behavior in STO/PTO/STO trilayer films under different N-shaped bending radii.

    图 4  STO/PTO/STO三层膜在不同U型弯曲半径下的电滞回线

    Fig. 4.  Hysteresis loops of STO/PTO/STO trilayer films under different U-shaped bending radii.

    图 5  STO/PTO/STO异质膜在U型弯曲变形下的电场调控极化分布特性

    Fig. 5.  Electric field-modulated polarization distribution in STO/PTO/STO trilayers under U-shaped bending deformation.

    图 6  STO/PTO/STO三层膜在不同N型弯曲半径下的电滞回线

    Fig. 6.  Hysteresis loops of STO/PTO/STO trilayer films under different N-shaped bending radii.

    图 7  STO/PTO/STO异质膜在N型弯曲变形下的电场调控极化分布特性

    Fig. 7.  Electric field-modulated polarization distribution in STO/PTO/STO trilayers under N-shaped bending deformation.

    表 1  相场模拟所用的材料参数取值[33,34] (SI单位制, 温度为300 K)

    Table 1.  Material parameter values in the phase-field simulations (SI unit, T=300 K).

    变量 数值 变量 数值
    PTO $ {\alpha _1}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} m {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ - 1.706 $ $ {{{Q}}_{11}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.089
    $ {\alpha _{11}}/({10^7}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ - 7.3 $ $ {{{Q}}_{12}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ –0.026
    $ {\alpha _{12}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 7.5 $ $ {{{Q}}_{44}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.0675
    $ {\alpha _{111}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ 2.6 $ $ {{{G}}_{11}}/({10^{ - 10}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 1.44 $
    $ {\alpha _{112}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ 6.1 $ $ {{{G}}_{12}}/({\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0
    $ {\alpha _{123}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ - 3.7 $ $ G_{44},G_{44}'/(10^{-11}\text{ }\mathrm{N}{\cdot}\mathrm{m}^4{\cdot}\mathrm{C}^{-2}) $ $ 7.2 $
    $ {{c}_{11}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 2.3 $ $ {{f}_{11}}/{\mathrm{V}} $ 1.6
    $ {{c}_{12}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1 $ $ {{f}_{12}}/{\mathrm{V}} $ –0.8
    $ {{c}_{44}}/({10^{10}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 7 $ $ {{f}_{44}}/{\mathrm{V}} $ 0.15
    STO $ {\alpha _1}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {\mathrm{m}} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 2.017 $ $ {{{Q}}_{44}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.00957
    $ {\alpha _{11}}/({10^9}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 1.7 $ $ {{{G}}_{11}}/({10^{ - 10}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 1.44 $
    $ {\alpha _{12}}/({10^9}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 4.45 $ $ {{{G}}_{12}}/({\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0
    $ {{c}_{11}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 3.3 $ $ {{{G}}_{44}}, {{G}}_{44}'/({10^{ - 11}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 7.2 $
    $ {{c}_{12}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1 $ $ {{f}_{11}}/{\mathrm{V}} $ –3.21
    $ {{c}_{44}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1.25 $ $ {{f}_{12}}/{\mathrm{V}} $ 1.47
    $ {{{Q}}_{11}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.0457 $ {{f}_{44}}/{\mathrm{V}} $ 1.07
    $ {{{Q}}_{12}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ –0.0135 εr (PTO/STO) 20
    下载: 导出CSV

    表 2  STO/PTO/STO三层膜在U型弯曲变形下电滞回线的矫顽电场、最大极化强度和剩余极化强度

    Table 2.  Coercive electric field, maximum polarization, and remnant polarization of the ferroelectric hysteresis loop in STO/PTO/STO trilayer films under U-shaped bending deformation.

    U型弯曲-
    R/nm
    εxx,z/
    (106 m–1)
    Ec/
    (kV·cm–1)
    Pmax/
    (μC·cm–2)
    Pr/
    (μC·cm–2)
    未弯曲 0 0 43.90 0
    1200 –0.61 2.78 43.72 –0.29
    937 –0.77 2.78 43.64 –0.31
    600 –1.14 5.56 43.52 –0.46
    400 –1.82 11.11 43.30 –0.57
    300 –2.42 13.89 43.05 –0.64
    240 –3.03 16.67 42.86 –0.69
    下载: 导出CSV

    表 3  STO/PTO/STO三层膜在N型弯曲变形下电滞回线的矫顽电场、最大极化强度和剩余极化强度

    Table 3.  Coercive electric field, maximum polarization, and remnant polarization of the ferroelectric hysteresis loop in STO/PTO/STO trilayer films under N-shaped bending deformation.

    N型弯曲-
    R/nm
    εxx,z/
    (106 m–1)
    Ec/
    (kV·cm–1)
    Pmax/
    (μC·cm–2)
    Pr/
    (μC·cm–2)
    未弯曲 0 0 43.90 0
    1200 0.61 –2.78 44.13 0.21
    600 1.14 –5.56 44.33 0.43
    400 1.82 –8.33 44.53 0.67
    300 2.42 –13.89 44.78 0.93
    240 3.03 –16.67 44.88 1.18
    200 3.61 –19.44 45.15 1.42
    下载: 导出CSV
  • [1]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [2]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [3]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [4]

    Ramesh R, Aggarwal S, Auciello O 2001 Mater. Sci. Eng., R 32 191Google Scholar

    [5]

    R. Bowen C, A. Kim H M, Weaver P, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [6]

    Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2019 Adv. Funct. Mater. 29 1807196Google Scholar

    [7]

    Singh A, Monga S, Sharma N, Sreenivas K, Katiyar R S 2022 J. Asian Ceram. Soc. 10 275Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. Technol. 11 1323Google Scholar

    [9]

    Wang W, Li J, Liu H, Ge S 2021 Adv. Sci. 8 2003074Google Scholar

    [10]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [11]

    Park J S, Jung S Y, Kim D H, Park J H, Jang H W, Kim T G, Baek S H, Lee B C 2023 Microsyst. Nanoeng. 9 1Google Scholar

    [12]

    Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O’Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar

    [13]

    Yao M, Cheng Y, Zhou Z, Liu M 2020 J. Mater. Chem. C 8 14Google Scholar

    [14]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [15]

    Jia X, Guo R, Tay B K, Yan X 2022 Adv. Funct. Mater. 32 2205933Google Scholar

    [16]

    Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S, Park C 2009 J. Appl. Phys. 106 024108Google Scholar

    [17]

    Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [18]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [19]

    Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [20]

    Peng B, Peng R C, Zhang Y Q, Dong G, Zhou Z, Zhou Y, Li T, Liu Z, Luo Z, Wang S, Xia Y, Qiu R, Cheng X, Xue F, Hu Z, Ren W, Ye Z G, Chen L Q, Shan Z, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [21]

    Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T 2022 Nano Lett. 22 2859Google Scholar

    [22]

    Cai S, Lun Y, Ji D, Lv P, Han L, Guo C, Zang Y, Gao S, Wei Y, Gu M, Zhang C, Gu Z, Wang X, Addiego C, Fang D, Nie Y, Hong J, Wang P, Pan X 2022 Nat. Commun. 13 5116Google Scholar

    [23]

    Wang J, Liu Z, Wang Q, Nie F, Chen Y, Tian G, Fang H, He B, Guo J, Zheng L, Li C, Lü W, Yan S 2024 Adv. Sci. 11 2401657Google Scholar

    [24]

    Tanwani M, Gupta P, Powar S, Das S 2025 Small 21 2405688Google Scholar

    [25]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [26]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [27]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [28]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [29]

    Lun Y, Wang X, Kang J, Ren Q, Wang T, Han W, Gao Z, Huang H, Chen Y, Chen L Q, Fang D, Hong J 2023 Adv. Mater. 35 2302320Google Scholar

    [30]

    Guo C, Yang H, Dong S, Tang S, Wang J, Wang X, Huang H 2024 Adv. Electron. Mater. 10 2400001Google Scholar

    [31]

    Guo C, Wang J, Huang H 2024 Appl. Phys. Lett. 125 062903Google Scholar

    [32]

    Zhou M J, Peng K, Tan Y Z, Yang T N, Chen L Q, Nan C W 2025 Acta Mater. 288 120805Google Scholar

    [33]

    Li Q, Nelson C T, Hsu S L, et al. 2017 Nat. Commun. 8 1468Google Scholar

    [34]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [35]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [36]

    高荣贞, 王静, 王俊升, 黄厚兵 2020 物理学报 69 217801Google Scholar

    Gao R Z, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 217801Google Scholar

    [37]

    梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥 2021 物理学报 70 044202Google Scholar

    Liang D S, Huang H B, Zhao Y N, Liu Z H, Wang H Y, Ma X Q 2021 Acta Phys. Sin. 70 044202Google Scholar

    [38]

    Li Y, Zatterin E, Conroy M, et al. 2022 Adv. Mater. 34 2106826Google Scholar

  • [1] 解晓洁, 孙俊松, 秦吉红, 郭怀明. 弯曲应变下六角晶格量子反铁磁体的赝朗道能级. 物理学报, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [2] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟. 物理学报, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [3] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究. 物理学报, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [4] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [5] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [6] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [7] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [8] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [9] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [10] 宋宗根, 邓科, 何兆剑, 赵鹤平. 高对称型声子晶体自准直弯曲及分束. 物理学报, 2016, 65(9): 094301. doi: 10.7498/aps.65.094301
    [11] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [12] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [13] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [14] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [15] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [16] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [17] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟. 物理学报, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [18] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [19] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [20] 吴自玉, 汪克林. 弯曲时空的半整数自旋场方程. 物理学报, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
计量
  • 文章访问数:  355
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-04-14
  • 上网日期:  2025-04-24

/

返回文章
返回