搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液晶驱动高Q值准连续域束缚态动态调谐

杨斐 张炳林 盛苗苗 金露凡 姚建铨

引用本文:
Citation:

液晶驱动高Q值准连续域束缚态动态调谐

杨斐, 张炳林, 盛苗苗, 金露凡, 姚建铨

Dynamic tuning of high-Q quasi-bound states in continuum driven by liquid crystal

YANG Fei, ZHANG Binglin, SHENG Miaomiao, JIN Lufan, YAO Jianquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 与传统的光子晶体或超表面等微纳光学系统相比, 基于连续域束缚态(bound states in the continuum, BIC)的光学体系通常具有更高的品质因子(quality factor, Q)与更窄的工作线宽, 更高的Q值给高性能的光电元件提供了更广阔的可能性, 但是更窄的线宽往往给实际应用造成一定麻烦, 因为加工过程中的制造误差无可避免地导致实际的光学元件与理想情况存在差异, 表现为实际工作波长与理想工作波长不匹配. 为了克服该问题, 本文利用带十字结构孔的光子晶体产生的对称保护型准连续域束缚态(quasi-bound states in the continuum, q-BIC), 探索液晶(liquid crystal, LC)对q-BIC的动态调谐效应, 以补偿加工误差导致的工作波长偏移. 相比于入射光倾斜角对q-BIC的调制效应, 在移动相同的波长时, LC对系统的Q值影响更小, 例如使用入射光倾斜角调制q-BIC中心波长移动5.32 nm时, Q值下降75.84%, 而使用LC调制q-BIC中心波长移动5.63 nm时, Q值上升了14.27%, 这证明LC对高Q因子、超窄带的q-BIC元件具有极大的应用潜力. 最后讨论了LC在q-BIC体系中的工作机理, 可为广泛q-BIC的相关研究提供参考.
    Optical systems based on bound states in the continuum (BIC) generally possess higher quality factor (Q) values and narrower operational linewidths than traditional photonic crystals or metasurfaces. The higher Q values offer extensive possibilities for high-performance optoelectronic devices. However, the narrower linewidths often pose challenges in practical applications, as fabrication errors during production inevitably lead to discrepancies between real optical devices and their ideal designs, which results in mismatches between actual and ideal operating wavelengths. To solve this problem, we explore the dynamic tuning effect of liquid crystal (LC) on quasi-bound states in the continuum (q-BIC) so as to compensate for wavelength shifts caused by fabrication errors. A photonic crystal slab with cross-shaped holes serves as the platform for generating q-BIC. Compared with the modulation induced by the tilt angles of incident light on q-BIC, LC has a less influence on the system’s Q factor when the same operational wavelength is shifted. For instance, shifting the central wavelength λ0 of q-BIC by 5.32 nm by using a tilted incident angle results in the Q factor decreasing to 75.84% (from 3809.05 to 920.28). Whereas shifting the central wavelength λ0 by 5.63 nm through the tilt angle θ of LC leads Q factor to increase 14.27% (from 3809.05 to 4352.65). This demonstrates the significant potential of LC dynamic tuning in high-Q and ultra-narrowband q-BIC devices. Finally, the mechanism of LC within the q-BIC system is discussed. The smaller influence of LC on the Q factor is attributed to its minimal disruption of the q-BIC system’s symmetry. Although LC also affects system symmetry within the cross-shaped holes, after adjusting the asymmetry parameters of the system, the Q factor and the LC tuning process can be well matched. The results of our research provides valuable references for carrying on extensive research on q-BIC.
  • 图 1  (a) 光子晶体薄板的元胞结构, 处于空气环境; (b) 填充LC的光子晶体, 初始状态LC分子沿着x方向排列

    Fig. 1.  (a) Unit cell of the photonic crystal slab, placed in an air environment; (b) unit cell filled with LC, with the LC molecules initially aligned along the x-direction.

    图 2  (a) 逐步改变d时光子晶体的透射谱; (b) Q因子与不对称参数γ的关系; (c) d = 60 nm, 光子晶体在空气环境与LC环境中的q-BIC

    Fig. 2.  (a) Transmission spectrum of the photonic crystal slab as the parameter d is gradually varied; (b) the relationship between Q factor and asymmetric parameter γ; (c) the q-BIC in air and LC environments when d = 60 nm.

    图 3  d = 60 nm时 (a) LC分子倾斜角θ对q-BIC的影响; (b) 入射光倾斜角对q-BIC的影响; (c) 分别使用LC与入射光倾斜角调制q-BIC移动中心波长λ0时对应的Q值变化

    Fig. 3.  d = 60 nm: (a) The influence of the tilt angle θ of LC molecules on q-BIC; (b) the influence of the incident angle on q-BIC; (c) changes in the Q factor when modulating the λ0 of q-BIC using LC or incident angle.

    图 4  d = 30 nm  (a) LC分子倾斜角θ对q-BIC的影响; (b) 入射光倾斜角对q-BIC的影响; (c) 分别使用LC与入射光倾斜角调制q-BIC移动中心波长λ0时对应的Q值变化

    Fig. 4.  d = 30 nm: (a) Influence of the tilt angle θ of LC molecules on q-BIC; (b) influence of the incident angle on q-BIC; (c) changes in the Q factor when modulating the λ0 of q-BIC using LC or incident angle.

    图 5  d = 30 nm (a) 光子晶体在空气中的电场分布, 箭头为xy平面内的电场方向; (b) 光子晶体在倾斜角θ = 0°的LC中的电场分布; (c) 光子晶体在倾斜角θ = 90°的LC中的电场分布; (d) LC调制过程中, 系统的Q值与修正后不对称参数γLC的关系

    Fig. 5.  (a)–(c) Electric field distribution when d = 30 nm, with arrows indicating the direction of the electric field in the xy plane; (a) in an air environment; (b) in LC with θ = 0°; (c) in LC with θ = 90°; (d) the relationship between the Q of the q-BIC and the modified asymmetry parameter γLC.

  • [1]

    Von Neumann J, Wigner E P 1929 Phys. Z. 30 467

    [2]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [3]

    Kang M, Liu T, Chan C T, Xiao M 2023 Nat. Rev. Phys. 5 659Google Scholar

    [4]

    Diao J Y, Han B X, Yin J, Li X J, Hong Z 2019 IEEE Photonics J. 11 4601110

    [5]

    Huo Y Y, Zhang Y Q, Liu X Y, Ning T Y, Ren Y Y 2025 Opt. Commun. 574 131255Google Scholar

    [6]

    Franceschini P, Tognazzi A, Chernyak A M, Musorin A I, Cino A C, Fedyanin A A, Angelis C D 2024 Nanophotonics 13 1Google Scholar

    [7]

    He W C, Wang Y S 2024 Opt. Express 32 39415Google Scholar

    [8]

    Ovcharenko A I, Blanchard C, Hugonin J P, Sauvan C 2020 Phys. Rev. B 101 155303Google Scholar

    [9]

    Krasikov S D, Bogdanov A A, Iorsh I V 2018 Phys. Rev. B 97 224309Google Scholar

    [10]

    Liang Y, Koshelev K, Zhang F C, Lin H, Lin S R, Wu J Y, Jia B H, Kivshar Y 2020 Nano Lett. 20 6351Google Scholar

    [11]

    Gorkunov M V, Antonov A A, Kivshar Y S 2020 Phys. Rev. Lett. 125 093903Google Scholar

    [12]

    Romano S, Zito G, Yépez SN L, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776Google Scholar

    [13]

    Romano S, Zito G, Torino S, Calafiore G, Penzo E, Coppola G, Cabrini S, Rendina I, Mocella V 2018 Photon. Res. 6 726Google Scholar

    [14]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [15]

    Ha S T, Domínguez R P, Kuznetsov A I 2022 Adv. Opt. Mater. 10 2200753Google Scholar

    [16]

    Carletti L, Koshelev K, Angelis C D, Kivshar Y 2018 Phys. Rev. Lett. 121 033903Google Scholar

    [17]

    Kang L, Wu Y H, Ma X Z, Lan S F, Werner D H 2021 Adv. Opt. Mater. 10 2101497

    [18]

    Kühne J, Wang J, Weber T, Kühner L, Maier S A, Tittl A 2021 Nanophotonics 10 4305Google Scholar

    [19]

    Li S Q, Xu X, Veetil R M, Valuckas V, Domínguez R P, Kuznetsov A I 2019 Science 364 1087Google Scholar

    [20]

    Zheng Z, Komar A, Kamali K Z, Noble J, Whichello L, Miroshnichenko A E, Rahmani M, Neshev D N, Xu L 2021 J. Appl. Phys. 130 053105Google Scholar

    [21]

    Cui T, Bai B F, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [22]

    Badloe T, Lee J, Seong J, Rho J 2021 Adv. Photonics Res. 2 2000205Google Scholar

    [23]

    Xu S T, Fan J, Xue Z, Sun T, Li G, Li J, Lu D, Cong L 2024 Photonics Res. 12 2207Google Scholar

    [24]

    Yu B B, Yang F, Zeng M D, Meng X Y, Qian Z H, Tai Y H, Li T 2025 Adv. Funct. Mater. 35 2413098Google Scholar

    [25]

    Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431Google Scholar

    [26]

    Dharmavarapu R, Izumi K, Katayama I, Ng S, Vongsvivut J, Tobin M, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S 2019 Nanophotonics 8 1263Google Scholar

    [27]

    Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411Google Scholar

    [28]

    Zhang X, Zhao Z, Liu P, Ako RT, Sriram S, Zhao X, Liu H, Bu H 2024 Opt. Lett. 49 7016Google Scholar

    [29]

    Komar A, Domínguez R P, Miroshnichenko A, Yu Y F, Kivshar Y S, Kuznetsov A I, Neshev D 2018 ACS Photonics 5 1742Google Scholar

  • [1] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, doi: 10.7498/aps.73.20240272
    [2] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, doi: 10.7498/aps.73.20231514
    [3] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器. 物理学报, doi: 10.7498/aps.70.20210241
    [4] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应. 物理学报, doi: 10.7498/aps.70.20210332
    [5] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, doi: 10.7498/aps.70.20210957
    [6] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [7] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, doi: 10.7498/aps.66.014202
    [8] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, doi: 10.7498/aps.65.194204
    [9] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, doi: 10.7498/aps.65.014213
    [10] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析. 物理学报, doi: 10.7498/aps.64.034209
    [11] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, doi: 10.7498/aps.64.120702
    [12] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用. 物理学报, doi: 10.7498/aps.64.124214
    [13] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射. 物理学报, doi: 10.7498/aps.63.094205
    [14] 陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁. 对称双缺陷光子晶体的可调谐滤波特性分析. 物理学报, doi: 10.7498/aps.63.154207
    [15] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, doi: 10.7498/aps.62.184212
    [16] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, doi: 10.7498/aps.62.134208
    [17] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, doi: 10.7498/aps.61.157805
    [18] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, doi: 10.7498/aps.60.034213
    [19] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, doi: 10.7498/aps.57.7344
    [20] 殷建玲, 黄旭光, 刘颂豪, 胡社军. 液晶调制的光子晶体可控偏光片和光开关. 物理学报, doi: 10.7498/aps.55.5268
计量
  • 文章访问数:  372
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-14
  • 修回日期:  2025-04-21
  • 上网日期:  2025-05-10

/

返回文章
返回