搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大语言模型加速材料设计—从知识挖掘到智能设计的全链条赋能

黄钰丹 夏琬钧 杜俊梅 蒋渝 汪鑫 陈元正 王红艳 赵纪军 郭春生

引用本文:
Citation:

大语言模型加速材料设计—从知识挖掘到智能设计的全链条赋能

黄钰丹, 夏琬钧, 杜俊梅, 蒋渝, 汪鑫, 陈元正, 王红艳, 赵纪军, 郭春生

Materials Design Accelerated by Large Language Models: End-to-End Empowerment from Knowledge Mining to Intelligent Design

HUANY Yudan, XIA Wanjun, DU Junmei, JIANG Yu, WANY Xin, CHEN Yuanzheng, WANY Hongyan, ZHAO Jijun, GUO Chunsheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着人工智能技术的飞速发展,大语言模型已经成为材料科学研究范式变革的核心驱动力。本文系统性地综述了大语言模型在材料科学全链条中的创新应用:在知识发现与挖掘领域,大语言模型凭借高效的信息检索和数据提取能力,为材料研究提供了关键起点,奠定了新范式的基础;在材料设计与实验优化方面,大语言模型通过跨尺度知识融合与智能推理,能够揭示数据间的潜在关联,在加速计算、合成设计、结构与性质预测、逆向设计等关键环节提供极具价值的解决方案,大语言模型与自动化实验平台的深度融合,实现实验流程的自然语言控制,显著提升了高通量实验的迭代效率。研究表明,大语言模型通过知识挖掘、知识推理与流程控制的三元协同,正在重塑材料研发的全流程。展望未来,随着多模态感知与可解释性增强技术的发展,大语言模型将推动材料科学研究进入新阶段。
    The rapid advancement of artificial intelligence has transformed materials science research, with large language models (LLMs) emerging as a pivotal driver of innovation. This review explores the comprehensive role of LLMs in accelerating materials design across the entire research lifecycle, from knowledge mining to intelligent design. The study aims to highlight how LLMs can address challenges in traditional materials research, such as data fragmentation, high experimental costs, and limited reasoning capabilities, by leveraging their strengths in information retrieval, cross-modal data integration, and intelligent reasoning.
    Key methodologies include the application of LLMs in knowledge discovery through techniques like retrieval-augmented generation (RAG), multi-modal information retrieval, and knowledge graph construction. These approaches enable efficient extraction and structuring of materials data from vast repositories of scientific literature and experimental records. Additionally, LLMs are integrated with automated experimental platforms to optimize workflows, from natural language-driven experiment design to high-throughput iterative testing.
    The results demonstrate that LLMs significantly enhance materials research efficiency and accuracy. For instance, in knowledge mining, LLMs improve information retrieval precision by up to 29.4% in tasks like predicting material synthesis conditions. In materials design, LLMs enable accelerated computational modeling, structural and property prediction, and inverse design, reducing experimental trial-and-error cycles. Notably, LLMs excel in cross-scale knowledge integration, linking material composition, processing parameters, and performance metrics to guide innovative synthesis pathways.
    However, challenges persist, including the reliance on high-quality data, the "black-box" nature of LLMs, and limitations in handling complex material systems. Future directions emphasize enhancing data quality through multi-source integration, improving model explainability via visualization tools, and deepening interdisciplinary collaboration to bridge gaps between AI and domain-specific expertise.
    In conclusion, LLMs are reshaping materials science by enabling data-driven, knowledge-intensive research paradigms. Their ability to integrate vast datasets, predict material properties, and automate experimental workflows positions them as indispensable tools for accelerating materials discovery and innovation. As LLMs evolve, their synergy with physical constraints and experimental platforms promises to unlock new frontiers in materials design.
  • [1]

    Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Kuttler H, Lewis M, Yin W, Rocktaschel T, Riedel S, Kiela D 2020 34th Conference on Neural Information Processing Systems (NeurIPS) Canada, December 6-12 2020, p16792

    [2]

    Shi L, Liu Z M, Yang Y, Wu W Z, Zhang Y Y, Zhang H B,Lin J, Wu S Y, Chen Z H, Li R M, Wang N, Liu Z P, Tan H B, Gao H Y, Zhang Y, Wang G 2024 arXiv:2408.04665v2 [cs.CL]

    [3]

    Luu R K., Buehler M J. 2024 Adv. Sci. 11 e2306724

    [4]

    Li J T, Liu Y Q, Fan W Q, Wei X Y, Liu H, Tang J L, Li Q 2024 IEEE Trans. Knowl. Data Eng. 36 6071

    [5]

    Park N H., Callahan T J., Hedrickd J L., Erdmann T, Capponi S 2024 arXiv:2408. 11793v2[cs.AI]

    [6]

    Chiang Y, Hsieh E, Chou C H, Riebesell J 2024 arXiv:2401.17244v3[cs.CL]

    [7]

    Tang Y H, Xu W B, Cao J, Ma J Z, Gao W L, Farrell S, Erichson B, Mahoney M W., Nonaka A, Yao Z 2025 arXiv:2502.13107v2[cs.AI]

    [8]

    Li C T, Han X, Jiang R H, Yun P W, Hu P F, Ban X J 2023 J. Eng. Sci. 46 290(in Chinese)[李长泰, 韩旭, 蒋若辉, 贠培文, 胡鹏飞, 班晓娟 2023 工程科学学报 46 290]

    [9]

    Tanishq G, Mohd Z, Krishnan N.M.A, Mausam 2022 npj Comput. Mater. 8 940

    [10]

    Lai N S, Tew Y S, Zhong X L, Yin J, Li J L, Yan B H, Wang X N 2023 Ind. Eng. Chem. Res. 62 17835

    [11]

    Thway M, Low A K. Y., Khetan S, Dai H W, Recatala J, Chen A P, Hippalgaonkar K 2024 Digit. Discov. 3 328

    [12]

    Yu S L, Ran N, Liu J J 2024 Artif. Intell. Chem. 2 100076

    [13]

    Durmaz A., Thomas A., Mishra L., Murthy R., Straub T. 2024 Sci. Data. 11 1

    [14]

    Lei G, Docherty R, Cooper S J. 2024 Digit. Discov. 3 1257

    [15]

    Weston L., Tshitoyan V., Dagdelen J., Kononova O., Trewartha A., Persson K. A., Ceder G. 2019 J. Chem. Inf. Model. 59 3692

    [16]

    Zeng Z, Yin B C, Wang S P, Liu J R, Yang C, Yao H S, Sun X Z, Sun M S, Xie G T, Liu Z Y 2024 Bioinform. 40 btae534

    [17]

    Jia X, Aziz A, Hashimoto Y, Li H 2024 Sci. China Mater. 67 1173

    [18]

    Polak Maciej P., Morgan D. 2024 Nat. Commun. 15 1

    [19]

    Foppiano L, Lambard G, Amagasa T, Ishii M 2024 Sci. Technol. Adv. Mater. Methods. 4 2356506

    [20]

    Dagdelen J, Dunn A, Lee S, Walker N, Rosen A S., Ceder G, Persson K A., Jain A 2024 Nat. Commun. 15 1

    [21]

    Zheng Z L, Zhang O F, Borgs C, Chayes J T., Yaghi O M. 2023 J. Am. Chem. Soc. 145 18048

    [22]

    Yang J M, Walker K C., Bekar A A., Hao B, Bhadelia N, Joseph D, Paschalidis I Ch., 2024 Int. J. Med. Inform. 189 105500

    [23]

    Shi Z B, Zhu L Y, Le X Q 2024 Data Anal. Knowl. Discov. 8 23(in Chinese)[时宗彬, 朱丽雅, 乐小虬 2024 数据分析与知识发现 8 23]

    [24]

    Markus B J. 2023 J.jmps 181 105454

    [25]

    Zia G A J, Valdestilhas A, Torres B J M, Kruschwitz S 2024 1st International Workshop on Semantic Materials Science: Harnessing the Power of Semantic Web Technologies in Materials Science, SeMatS 2024 Amsterdam, the Netherlands, September 17-19 2024, p101

    [26]

    Corlatescu D G, Watanabe M, Ruseti S, Dascalu M, McNamara D S. 2024 Comput. Hum. Behav. 154 108154

    [27]

    Bai X F, He S, Li Y, Xie Y B, Zhang X, Du W L, Li J R 2025 NPJ Comput. Mater. 11 1

    [28]

    He Q, Yang X Q, Xu Y 2018 J. Reinf. Plast. Compos. 4 62(in Chinese)[贺强, 杨晓强, 徐艺 2018 玻璃钢/复合材料 4 62]

    [29]

    Chen H L 2018 Building and Investigating a Metal Materials Image Knowledge Base Derived from Wikipedia M.S. Dissertation(Shijiazhuang: Hebei University of Science and Technology) (in Chinese) [陈慧琳 2018 基于Wikipedia金属材料图片知识库的构建与研究 硕士学位论文 (石家庄:河北科技大学)]

    [30]

    Ye Y P, Ren J, Wang S Z, Wan Y W, Wang H F, Razzak I, Hoex B, Xie T, Zhang W J 2024 arXiv:2404.03080v3[cs.CL]

    [31]

    Yang F L, Egon C, Xue J, Ryuhei S, Kazuaki K, Yusuke H, Shin O, Li H 2023 Nano Mater. Sci. 6 256

    [32]

    Songshan Lake Materials Laboratory, Chinese Academy of Sciences Institute of Physics https://news.qq.com/rain/a/20250211A03D5O00 [2025-2-11]

    [33]

    Buehler M J. 2024 ACS Eng. Au 4 241

    [34]

    Cai J M, Yuan Y J, Sui X P, Lin Y Z, Zhuang K, Xu Y, Zhang Q, Ukrainczyk N, Xie T Y 2024 Constr. Build. Mater. 425 135965

    [35]

    Ren H Y, Liu J P, Wang J, Gu X X, Chen X, Zhang Y, Zhao C X 2024 Comput. Eng. Appl. 12 24(in Chinese)[任海玉, 刘建平, 王健, 顾勋勋, 陈曦, 张越, 赵昌顼 2024 计算机工程与应用 12 24]

    [36]

    Bran A M., Cox S, Schilter O, Baldassari C, White A D., Schwaller P 2024 Nat. Mach. Intell. 6 525

    [37]

    Ansari M, Watchorn J, Brown C E., Brown J S. 2024 arXiv:2410. 03963v1[physics. chem-ph]

    [38]

    Zheng Z L, Rampal N, Inizan T J, Borgs C, Chayes J T., Yaghi O M. 2025 Nat. Rev. Mater. 10 369

    [39]

    Yoshikawa N, Skreta M, Darvish K, Arellano S, Zhi J, Kristensen L B, Li A Z, Zhao Y C, Xu H P, Kuramshin A, Aspuru A, Shkurti F, Garg A 2023 Auton. Robot. 47 1057

    [40]

    Zhu Q, Zhang F, Huang Y, Xiao H Y, Zhao L Y, Zhang X C, Song T, Tang X S, Li X, He G, Chong B C, Zhou J Y, Zhang Y H, Zhang B C, Cao J Q, Luo M, Wang S, Ye G L, Zhang W J, Chen X, Cong S, Zhou D L, Li H R, Li J L, Zou G, Shang W W, Jiang J, Luo Y 2022 Natl. Sci. Rev. 9 nwac190

    [41]

    Dai T, Vijayakrishnan S, Szczypiński F T., Ayme J F, Simaei E, Fellowes T, Clowes R, Kotopanov L, Shields C E., Zhou Z X, Ward J W., Cooper A I. 2024 Nat. 635 890

    [42]

    Seifrid M, Strieth F, Haddadnia M, Wu T C., Alca E, Bodo L, Arellano S, Yoshikawa N, Skreta M, Keunen R, Aspuru A 2024 Digit. Discov. 3 1319

    [43]

    Dr. Zheng Z L, Dr. Federico F, Brooke J, Wu H Y, Dr. Li S, Dr. Kakasaheb Y. N, Dr. Chase A. S, Dr. Jason G. M, Prof. William H. G, Prof. Klavs F. Jensen 2024 Angew. Chem. Int. Ed. 64 e202418074

    [44]

    Ruan Y X, Lu C Y, Xu N, He Y C, Chen Y X, Zhang J, Xuan J, Pan J Z, Fang Q, Gao H Y, Shen X D, Ye N, Zhang Q, Mo Y M 2024 Nat. Commun. 15 1

    [45]

    Hatakeyama K, Ishikawa H, Takaishi S, Igarashi Y, Nabae Y, Hayakawa T 2024 Polym. J. 56 997

    [46]

    J Y Zhou, M Luo, L J Chen, Q Zhu, S Jiang, F Zhang, W W Shang, J Jiang 2025 Digit. Discov. 4 636

    [47]

    Antunes L M., Butler K T., Grau C R 2024 Nat. Commun. 15 1

    [48]

    Szymanski N J., Rendy B, Fei Y X, Kumar R E., He T J, Milsted D, McDermott M J., Gallant M, Cubuk E D, Merchant A, Kim H, Jain A, Bartel C J., Persson K, Zeng Y, Ceder G 2023 Nat. 624 86

    [49]

    Sriram A, Miller B K, Chen R T.Q., Wood B M. 2024 arXiv:2410.23405v1[cs.LG]

    [50]

    Jia S Y, Zhang C, Fung V 2024 arXiv:2406.13163v1[cond-mat. mtrl-sci]

    [51]

    Liu H, Zheng H, Jia Z H, Zhou B H, Liu Y, Chen X L, Feng Y J, Li W, Yang W J, Li H 2023 Front. Chem. Sci. Eng. 17 2156

    [52]

    Zhang C Y, Wang X Y, Wang Z Y 2024 Chin. J. Catal. 59 7

    [53]

    Slautin B N., Liu Y T, Liu Y, Emery R, Hong S, Dubey A, Shvartsman V V., Lupascu D C., Sanchez S L., Ahmadi M, Kim Y, Strelcov E, Brown K A., Rack P D., Kalinin S V. 2025 arXiv:2501.02503v1[cond-mat.mtrl-sci]

    [54]

    Su Y M, Wang X, Ye Y X, Xie Y B, Xu Y J, Jiang Y B, Wang C 2024 Chem. Sci. 15 12200

    [55]

    Chen Z Y, Xie F K, Wan M, Yuan Y, Liu M, Wang Z G, Meng S, Wang Y L 2023 Chin. Phys. B 32 173(in Chinese)[陈子逸, 谢帆恺, 万萌, 袁扬, 刘淼, 王宗国, 孟胜, 王彦棡 2023 Chinese Physics B 32 173]

    [56]

    Zhang D, Li H 2024 arXiv:10.26434[cs.DL]

    [57]

    Razlivina J, Dmitrenko A, Vinogradov V 2024 J. Phys. Chem. 15 5804

    [58]

    Chen X Q, Gao Y, Wang L D, Cui W J, Huang J M, Du Y, Wang B 2024 Sci. Data 11 1

    [59]

    Liu S Y, Wen T Q, Pattamatta A. S. L. S, Srolovitz D J. 2024 Mater. Today 80 240

    [60]

    Chen C, Maqsood A, Zhang Z, Wang X B, Duan L R, Wang H H, Chen T Y, Liu S Y, Li Q T, Luo J S, Jacobsson T. J 2024 Cell Rep. Phys. Sci. 5 102058

    [61]

    Wang J Y, Liu X J, Wu Y, Wang H, Ma D, Lu Z P 2023 Acta Mater. 261 119386

    [62]

    Wang Z W, Han M, Jin B 2024 Environ. Chem. 43 69(in Chinese)[王紫维, 韩民, 金彪 2024 环境化学 43 69]

    [63]

    Ding R, Wang X B, Tan A, Li J, Liu J G 2023 ACS Catal. 13 13267

    [64]

    Unni R, Zhou M Y, Wiecha P R., Zheng Y B 2024 Curr. Opin. Solid State Mater. Sci. 30 101157

    [65]

    Han X Q,Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 135

    [66]

    Choudhary K 2024 J. Am. Chem. Soc. 15 6909

    [67]

    Oliveira J, O. N. Christino, L. Oliveira M. C. F., Paulovich F. V. 2023 J. Chem. Inf. Model. 63 7605

    [68]

    Liu G,Sun M, Wojciech M, Jiang M, Chen J 2024 arXiv:2410. 04223v1[cs.LG]

    [69]

    Zhang C W, Zhai Y S, Gong Z Y, Duan H L, She Y B, Yang Y F, Su A 2024 J. Cheminform. 16 1

    [70]

    Choi J, Lee B 2024 Commun. Mater. 5 1

    [71]

    Wang Y X, Li Y, Tang Z C, Li H, Yuan Z L, Tao H G, Zou N L, Bao T, Liang X H, Chen Z Z, Xu S H, Bian C, Xu Z M, Wang C, Si C, Duan W H, Xu Y 2024 Sci. Bull. 69 2514

    [72]

    Liu Y, Yang Z W, Yu Z Y, Liu Z T, Liu D H, Lin H L, Li M Q, Ma S C, Avdeev X, Shi S Q 2023 J. Materiomics 9 798

    [73]

    Markus J. B 2024 Adv. Funct. Mater. 34 9531

    [74]

    Wu T, Shen J Z, Jia Z X, Wang Y X, Zheng Z L 2025 arXiv:2502. 18890v1[cs.CL]

    [75]

    Obuchi K, Funaya K, Toyama K 2024 NEC Tech. J. 17 46

    [76]

    Li R C, Patel T, Wang Q Y, Du X Y 2024 arXiv:2408. 14033v2 [cs.AI]

    [77]

    Luo Z M, Yang Z L, Xu Z X, Yang W, Du X Y 2025 arXiv:2501. 04306v1[cs.CL]

    [78]

    Tang Z C, Li H, Lin P Z, Gong X X, Jin G, He L X, Jiang H, Ren X G, Duan W H, Xu Y 2024 Nat. Commun. 15 8815

  • [1] 白靖宜, 黄桥高, 高鹏骋, 问昕, 褚勇. 基于去噪概率扩散模型的蝠鲼流场智能化预测. 物理学报, doi: 10.7498/aps.74.20241499
    [2] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能. 物理学报, doi: 10.7498/aps.74.20241379
    [3] 吴思远, 李泓. 大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建. 物理学报, doi: 10.7498/aps.74.20250572
    [4] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, doi: 10.7498/aps.73.20240006
    [5] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, doi: 10.7498/aps.72.20230208
    [6] 王龙, 汪刘应, 刘顾, 唐修检, 葛超群, 王滨, 许可俊, 王新军. 基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计. 物理学报, doi: 10.7498/aps.72.20231084
    [7] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, doi: 10.7498/aps.70.20202235
    [8] 魏新权, 毕甲紫, 李然. 超高强块体非晶合金的研究进展. 物理学报, doi: 10.7498/aps.66.176408
    [9] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计. 物理学报, doi: 10.7498/aps.66.036104
    [10] 巫金波, 温维佳. 场诱导软物质智能材料研究进展. 物理学报, doi: 10.7498/aps.65.188301
    [11] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, doi: 10.7498/aps.65.116802
    [12] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, doi: 10.7498/aps.64.084401
    [13] 安宝冉, 刘国平. 带时延与丢包的网络化多智能体系统控制器设计. 物理学报, doi: 10.7498/aps.63.140203
    [14] 张洪欣, 李姗, 张金玲, 刘雯, 吕英华. 基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析. 物理学报, doi: 10.7498/aps.61.054101
    [15] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, doi: 10.7498/aps.60.054103
    [16] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, doi: 10.7498/aps.60.108901
    [17] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, doi: 10.7498/aps.58.4041
    [18] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, doi: 10.7498/aps.58.3293
    [19] 舒 斌, 张鹤鸣, 朱国良, 樊 敏, 宣荣喜. 基于智能剥离技术的SOI材料制备. 物理学报, doi: 10.7498/aps.56.1668
    [20] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, doi: 10.7498/aps.55.3043
计量
  • 文章访问数:  53
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-03

/

返回文章
返回