搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大语言模型加速材料设计——从知识挖掘到智能设计的全链条赋能

黄钰丹 夏琬钧 杜俊梅 蒋渝 汪鑫 陈元正 王红艳 赵纪军 郭春生

引用本文:
Citation:

大语言模型加速材料设计——从知识挖掘到智能设计的全链条赋能

黄钰丹, 夏琬钧, 杜俊梅, 蒋渝, 汪鑫, 陈元正, 王红艳, 赵纪军, 郭春生

Material design accelerated by large language models: end-to-end empowerment from knowledge mining to intelligent design

HUANY Yudan, XIA Wanjun, DU Junmei, JIANG Yu, WANY Xin, CHEN Yuanzheng, WANY Hongyan, ZHAO Jijun, GUO Chunsheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着人工智能技术的飞速发展, 大语言模型已经成为材料科学研究范式变革的核心驱动力. 本文系统性地综述了大语言模型在材料科学全链条中的创新应用: 在知识发现与挖掘领域, 大语言模型凭借高效的信息检索和数据提取能力, 为材料研究提供了关键起点, 奠定了新范式的基础; 在材料设计与实验优化方面, 大语言模型通过跨尺度知识融合与智能推理, 能够揭示数据间的潜在关联, 在加速计算、合成设计、结构与性质预测、逆向设计等关键环节提供极具价值的解决方案, 大语言模型与自动化实验平台的深度融合, 实现实验流程的自然语言控制, 显著地提升了高通量实验的迭代效率. 研究表明, 大语言模型通过知识挖掘、知识推理与流程控制的三元协同, 正在重塑材料研发的全流程. 展望未来, 随着多模态感知与可解释性增强技术的发展, 大语言模型将推动材料科学研究进入新阶段.
    With the rapid development of artificial intelligence technology, large language models (LLMs) have become the core driving force for the paradigm shift in materials science research. This review explores the comprehensive role of LLMs in accelerating material design throughout the entire research lifecycle from knowledge mining to intelligent design. This work aims to emphasize how LLMs can leverage their advantages in information retrieval, cross-modal data integration, and intelligent reasoning to address challenges in traditional materials research, such as data fragmentation, high experimental costs, and limited reasoning capabilities.Key methods include applying LLMs to knowledge discovery through techniques such as retrieval-augmented generation (RAG), multi-modal information retrieval, and knowledge graph construction. These approaches can efficiently extract and construct material data from a vast repository of scientific literature and experimental records. Additionally, LLMs are integrated with automated experimental platforms to optimize workflows from natural language-driven experiment design to high-throughput iterative testing.The results demonstrate that LLMs significantly enhance material research efficiency and accuracy. For instance, in knowledge mining, LLMs improve information retrieval accuracy by up to 29.4% in tasks such as predicting material synthesis conditions. In material design, LLMs can accelerate computational modeling, structure and performance prediction, and reverse engineering, reducing experimental trial-and-error cycles. Notably, LLMs perform well in cross-scale knowledge integration, linking material composition, processing parameters, and performance metrics to guide innovative synthesis pathways.However, challenges still exist, including dependence on high-quality data, the “black-box” nature of LLMs, and limitations in handling complex material systems. The future direction emphasizes improving data quality through multi-source integration, enhancing model explainability through visualization tools, and deepening interdisciplinary collaboration, and bridging the gaps between AI and domain-specific expertise.In summary, LLMs are reshaping materials science by implementing a data-driven, knowledge-intensive research paradigms. The ability of LLMs to integrate vast datasets, predict material properties, and automate experimental workflows makes them indispensable tools for accelerating material discovery and innovation. With the development of LLMs, their synergistic effect with physical constraints and experimental platforms is expected to open new fields in material design.
  • 图 1  大语言模型加速材料设计全流程赋能示意图

    Fig. 1.  Schematic diagram of the full-chain empowerment of material design accelerated by large language models.

    图 2  (a) CLAIRify框架: 基于LLMs的NLP模块. LLMs采用输入①; 结构化语言定义和资源约束, 生成未经验证的结构化语言②; 输出结果由验证者检查并通过反馈传递给LLMs③; LLMs产生的输出通过验证器④; 将正确的输出⑤; 传递给任务和运动规划模块⑥; 生成机器人轨迹⑦[39]; (b) 自主移动机器人研究各个系统的工作流程和每个模块的功能[40]; (c) Chemspyd通过Executor与AutoSuite进行通信, Executor读写共享的CSV文件, 提供了一种标准的通信方式, 这种通信方式是人类可读的, 并且由Python和AutoSuite共同支持[42]

    Fig. 2.  (a) CLAIRify Framework: NLP Module Based on LLMs. The LLMs take input ①; structured language definitions and resource constraints are used to generate unverified structured language ②; the output is checked by a verifier and fed back to the LLMs via feedback ③; the output generated by the LLMs passes through the verifier ④; the correct output ⑤ is passed to the task and motion planning module ⑥; generating robot trajectories ⑦[39]. (b) Workflow of various systems in autonomous mobile robot research and the functions of each module[40]; (c) Chemspyd communicates with AutoSuite via the Executor, which reads and writes shared CSV files, providing a standardized communication method that is human-readable and supported by both Python and AutoSuite[42].

    图 3  (a) 流动化学系统集成的多种反应模块和在线分析工具形成了连续的合成路径[54]; (b) 上部分为DiZyme工作流程: 从制定科学任务到发现新的纳米酶材料. 下部分为使用 pubchempy和rdkit文库获得的新描述符扩展了数据库, 表示有机涂层和材料成分的分子特征[57]; (c) 顶部面板是标准文本挖掘过程的示意图: 左部分是专家注释以构建基线语料库; 中间部分是从文献文本中提取关键信息并构建扩展语料库; 右部分是存储在数据库中以供将来的数据挖掘. 底部面板为将合成句子转换为动作序列的示例. 动作序列的关键组成部分, 如起始和目标材料、合成步骤及其条件, 通过不同的文本挖掘算法从段落中找到和提取[58]

    Fig. 3.  (a) Integration of various reaction modules and online analytical tools in a flow chemistry system, forming a continuous synthetic pathway[54]. (b) The upper part illustrates the DiZyme workflow: from formulating scientific tasks to discovering new nanozyme materials. The lower part shows the expansion of the database with new descriptors obtained using the pubchempy and rdkit libraries, representing molecular features of organic coatings and material compositions[57]. (c) The top panel is a schematic diagram of the standard text mining process: the left part involves expert annotation to construct a baseline corpus; the middle part extracts key information from literature texts and builds an extended corpus; the right part stores the data in a database for future data mining. The bottom panel provides an example of converting synthesis sentences into action sequences. Key components of the action sequences, such as starting and target materials, synthesis steps, and their conditions, are identified and extracted from paragraphs using different text mining algorithms[58].

    图 4  (a) 生成式AI工具可以增强材料科学中的假设生成[59]; (b) 定制工作流程的示意图, 从已知的合金成分到发现新的金属玻璃[60]; (c) 玻璃金属模型[61]; (d) MgBERT模型的基本架构[59]

    Fig. 4.  (a) Generative AI tools can enhance hypothesis generation in materials science[59]; (b) schematic diagram of a customized workflow, from known alloy compositions to the discovery of new metallic glasses[60]; (c) a metallic glass model[61]; (d) the basic architecture of the MgBERT model[59].

    图 5  (a) BERT的工作流程[69]; (b) MLP 的过程包括五个步骤: 数据收集、预处理、文本分类、信息提取和数据挖掘[70]; (c) 用于构建 ANN 建模数据库的数字化过程图示[63]

    Fig. 5.  (a) Workflow of BERT[69]; (b) the process of MLP consists of five steps: data collection, preprocessing, text classification, information extraction, and data mining[70]; (c) illustration of the digitization process for constructing an ANN modeling database[63].

  • [1]

    Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Kuttler H, Lewis M, Yin W, Rocktaschel T, Riedel S, Kiela D 2020 34th Conference on Neural Information Processing Systems (NeurIPS) Canada, December 6-12 2020, p16792

    [2]

    Shi L, Liu Z M, Yang Y, Wu W Z, Zhang Y Y, Zhang H B, Lin J, Wu S Y, Chen Z H, Li R M, Wang N, Liu Z P, Tan H B, Gao H Y, Zhang Y, Wang G 2024 arXiv: 2408.04665v2 [cs. CL]

    [3]

    Luu R K., Buehler M J. 2024 Adv. Sci. 11 e2306724Google Scholar

    [4]

    Li J T, Liu Y Q, Fan W Q, Wei X Y, Liu H, Tang J L, Li Q 2024 IEEE Trans. Knowl. Data Eng. 36 6071Google Scholar

    [5]

    Park N H. , Callahan T J. , Hedrickd J L, Erdmann T, Capponi S 2024 arXiv: 2408. 11793v2[cs. AI]

    [6]

    Chiang Y, Hsieh E, Chou C H, Riebesell J 2024 arXiv: 2401.17244v3[cs. CL]

    [7]

    Tang Y H, Xu W B, Cao J, Ma J Z, Gao W L, Farrell S, Erichson B, Mahoney M W. , Nonaka A, Yao Z 2025 arXiv: 2502.13107v2[cs. AI]

    [8]

    李长泰, 韩旭, 蒋若辉, 贠培文, 胡鹏飞, 班晓娟 2023 工程科学学报 46 290

    Li C T, Han X, Jiang R H, Yun P W, Hu P F, Ban X J 2023 Chin. J. Eng. Sci. 46 290

    [9]

    Tanishq G, Mohd Z, Anoop Krishnan N M, Mausam 2022 npj Comput. Mater. 8 940

    [10]

    Lai N S, Tew Y S, Zhong X L, Yin J, Li J L, Yan B H, Wang X N 2023 Ind. Eng. Chem. Res. 62 17835Google Scholar

    [11]

    Thway M, Low A K. Y., Khetan S, Dai H W, Recatala J, Chen A P, Hippalgaonkar K 2024 Digital Discovery 3 328Google Scholar

    [12]

    Yu S L, Ran N, Liu J J 2024 Artif. Intell. Chem. 2 100076Google Scholar

    [13]

    Durmaz A R, Thomas A, Mishra L, Murthy R N, Straub T 2024 Sci. Data. 11 1112Google Scholar

    [14]

    Lei G, Docherty R, Cooper S J. 2024 Digital Discovery 3 1257Google Scholar

    [15]

    Weston L, Tshitoyan V, Dagdelen J, Kononova O, Trewartha A, Persson K A, Ceder G 2019 J. Chem. Inf. Model. 59 3692Google Scholar

    [16]

    Zeng Z N, Yin B C, Wang S P, Liu J R, Yang C, Yao H S, Sun X Z, Sun M S, Xie G T, Liu Z Y 2024 Bioinformatics 40 btae534Google Scholar

    [17]

    Jia X, Aziz A, Hashimoto Y, Li H 2024 Sci. China Mater. 67 1173Google Scholar

    [18]

    Polak M P, Morgan D 2024 Nat. Commun. 15 1569Google Scholar

    [19]

    Foppiano L, Lambard G, Amagasa T, Ishii M 2024 Sci. Technol. Adv. Mater. Methods. 4 2356506

    [20]

    Dagdelen J, Dunn A, Lee S, Walker N, Rosen A S, Ceder G, Persson K A, Jain A 2024 Nat. Commun. 15 1418Google Scholar

    [21]

    Zheng Z L, Zhang O F, Borgs C, Chayes J T., Yaghi O M 2023 J. Am. Chem. Soc. 145 18048Google Scholar

    [22]

    Yang J M, Walker K C, Bekar A A, Hao B, Bhadelia N, Joseph D, Paschalidis I C, 2024 Int. J. Med. Informatics 189 105500Google Scholar

    [23]

    时宗彬, 朱丽雅, 乐小虬 2024 数据分析与知识发现 8 23

    Shi Z B, Zhu L Y, Le X Q 2024 Data Anal. Knowl. Discovery 8 23

    [24]

    Buehler M J 2023 J. Mech. Phys. Solids 181 105454Google Scholar

    [25]

    Zia G A J, Valdestilhas A, Torres B J M, Kruschwitz S 2024 1st International Workshop on Semantic Materials Science: Harnessing the Power of Semantic Web Technologies in Materials Science, SeMatS 2024 Amsterdam, the Netherlands, September 17-19 2024, p101

    [26]

    Corlatescu D G, Watanabe M, Ruseti S, Dascalu M, McNamara D S 2024 Comput. Hum. Behav. 154 108154Google Scholar

    [27]

    Bai X F, He S, Li Y, Xie Y B, Zhang X, Du W L, Li J R 2025 NPJ Comput. Mater. 11 1Google Scholar

    [28]

    贺强, 杨晓强, 徐艺 2018 玻璃钢/复合材料 4 62

    He Q, Yang X Q, Xu Y 2018 Fiber Reinf. Plast. /Compos. 4 62

    [29]

    陈慧琳 2017 硕士学位论文 (石家庄: 河北科技大学)

    Chen H L 2017 M. S. Thesis (Shijiazhuang: Hebei University of Science and Technology

    [30]

    Ye Y P, Ren J, Wang S Z, Wan Y W, Wang H F, Razzak I, Hoex B, Xie T, Zhang W J 2024 arXiv: 2404.03080v3[cs. CL]

    [31]

    Yang F L, Egon C, Xue J, Ryuhei S, Kazuaki K, Yusuke H, Shin O, Li H 2023 Nano Mater. Sci. 6 256

    [32]

    Songshan Lake Materials Laboratory, Chinese Academy of Sciences Institute of Physics https://news.qq.com/rain/a/20250211A03D5O00 [2025-2-11]

    [33]

    Buehler M J 2024 ACS Eng. Au 4 241Google Scholar

    [34]

    Cai J M, Yuan Y J, Sui X P, Lin Y Z, Zhuang K, Xu Y, Zhang Q, Ukrainczyk N, Xie T Y 2024 Constr. Build. Mater. 425 135965Google Scholar

    [35]

    任海玉, 刘建平, 王健, 顾勋勋, 陈曦, 张越, 赵昌顼 2024 计算机工程与应用 61 1

    Ren H Y, Liu J P, Wang J, Gu X X, Chen X, Zhang Y, Zhao C X 2025 Comput. Eng. Appl. 61 1

    [36]

    Bran A M, Cox S, Schilter O, Baldassari C, White A D, Schwaller P 2024 Nat. Mach. Intell. 6 525Google Scholar

    [37]

    Ansari M, Watchorn J, Brown C E, Brown J S 2024 arXiv: 2410. 03963v1[physics. chem-ph]

    [38]

    Zheng Z L, Rampal N, Inizan T J, Borgs C, Chayes J T, Yaghi O M 2025 Nat. Rev. Mater. 10 369Google Scholar

    [39]

    Yoshikawa N, Skreta M, Darvish K, Arellano S, Zhi J, Kristensen L B, Li A Z, Zhao Y C, Xu H P, Kuramshin A, Aspuru A, Shkurti F, Garg A 2023 Auton. Robot. 47 1057Google Scholar

    [40]

    Zhu Q, Zhang F, Huang Y, Xiao H Y, Zhao L Y, Zhang X C, Song T, Tang X S, Li X, He G, Chong B C, Zhou J Y, Zhang Y H, Zhang B C, Cao J Q, Luo M, Wang S, Ye G L, Zhang W J, Chen X, Cong S, Zhou D L, Li H R, Li J L, Zou G, Shang W W, Jiang J, Luo Y 2022 Natl. Sci. Rev. 9 nwac190Google Scholar

    [41]

    Dai T W, Vijayakrishnan S, Szczypiński F T, Ayme J F, Simaei E, Fellowes T, Clowes R, Kotopanov L, Shields C E, Zhou Z X, Ward J W, Cooper A I 2024 Nature 635 8040

    [42]

    Seifrid M, Strieth F, Haddadnia M, Wu T C, Alca E, Bodo L, Arellano S, Yoshikawa N, Skreta M, Keunen R, Aspuru A 2024 Digital Discovery 3 1319Google Scholar

    [43]

    Zheng Z L, Florit F, Jin B K, Wu H Y, Li S C, Nandiwale K Y, Chase A Salazar C A, Jason G Mustakis J G, Green W H, Jensen K F 2024 Angew. Chem. Int. Ed. 64 e202418074

    [44]

    Ruan Y X, Lu C Y, Xu N, He Y C, Chen Y X, Zhang J, Xuan J, Pan J Z, Fang Q, Gao H Y, Shen X D, Ye N, Zhang Q, Mo Y M 2024 Nat. Commun. 15 10160Google Scholar

    [45]

    Hatakeyama K, Ishikawa H, Takaishi S, Igarashi Y, Nabae Y, Hayakawa T 2024 Polym. J. 56 997Google Scholar

    [46]

    Zhou J Y, Luo M, Chen L J, Zhu Q, Jiang S, Zhang F, Shang W W, Jiang J 2025 Digital Discovery 4 636Google Scholar

    [47]

    Antunes L M, Butler K T, Grau C R 2024 Nat. Commun. 15 10570Google Scholar

    [48]

    Szymanski N J, Rendy B, Fei Y X, Kumar R E, He T J, Milsted D, McDermott M J, Gallant M, Cubuk E D, Merchant A, Kim H, Jain A, Bartel C J, Persson K, Zeng Y, Ceder G 2023 Nature 624 86Google Scholar

    [49]

    Sriram A, Miller B K, Chen R T Q, Wood B M 2024 arXiv: 2410.23405v1[cs. LG]

    [50]

    Jia S Y, Zhang C, Fung V 2024 arXiv: 2406.13163v1[cond-mat. mtrl-sci]

    [51]

    Liu H, Zheng H, Jia Z H, Zhou B H, Liu Y, Chen X L, Feng Y J, Li W, Yang W J, Li H 2023 Front. Chem. Sci. Eng. 17 2156Google Scholar

    [52]

    张成翼, 王兴宇, 王子运 2024 催化学报 59 7Google Scholar

    Zhang C Y, Wang X Y, Wang Z Y 2024 Chin. J. Catal. 59 7Google Scholar

    [53]

    Slautin B N, Liu Y T, Liu Y, Emery R, Hong S, Dubey A, Shvartsman V V, Lupascu D C, Sanchez S L, Ahmadi M, Kim Y, Strelcov E, Brown K A, Rack P D, Kalinin S V 2025 arXiv: 2501.02503v1[cond-mat. mtrl-sci]

    [54]

    Su Y M, Wang X, Ye Y X, Xie Y B, Xu Y J, Jiang Y B, Wang C 2024 Chem. Sci. 15 12200Google Scholar

    [55]

    陈子逸, 谢帆恺, 万萌, 袁扬, 刘淼, 王宗国, 孟胜, 王彦棡 2023 中国物理 B 32 118104Google Scholar

    Chen Z Y, Xie F K, Wan M, Yuan Y, Liu M, Wang Z G, Meng S, Wang Y L 2023 Chin. Phys. B 32 118104Google Scholar

    [56]

    Zhang D, Li H 2024 arXiv: 10.26434[cs. DL]

    [57]

    Razlivina J, Dmitrenko A, Vinogradov V 2024 J. Phys. Chem. 15 5804

    [58]

    Chen X Q, Gao Y, Wang L D, Cui W J, Huang J M, Du Y, Wang B 2024 Sci. Data 11 347Google Scholar

    [59]

    Liu S Y, Wen T Q, Pattamatta A S L S, Srolovitz D J 2024 Mater. Today 80 240Google Scholar

    [60]

    Chen C, Maqsood A, Zhang Z, Wang X B, Duan L R, Wang H H, Chen T Y, Liu S Y, Li Q T, Luo J S, Jacobsson T J 2024 Cell Rep. Phys. Sci. 5 102058Google Scholar

    [61]

    Wang J Y, Liu X J, Wu Y, Wang H, Ma D, Lu Z P 2023 Acta Mater. 261 119386Google Scholar

    [62]

    王紫维, 韩民, 金彪 2024 环境化学 43 69Google Scholar

    Wang Z W, Han M, Jin B 2024 Environ. Chem. 43 69Google Scholar

    [63]

    Ding R, Wang X B, Tan A, Li J, Liu J G 2023 ACS Catal. 13 13267Google Scholar

    [64]

    Unni R, Zhou M Y, Wiecha P R, Zheng Y B 2024 Curr. Opin. Solid State Mater. Sci. 30 101157Google Scholar

    [65]

    Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403Google Scholar

    [66]

    Choudhary K 2024 J. Am. Chem. Soc. 15 6909

    [67]

    Oliveira O N Jr, Christino L, Oliveira M C F, Paulovich F V 2023 J. Chem. Inf. Model. 63 7605Google Scholar

    [68]

    Liu G, Sun M, Wojciech M, Jiang M, Chen J 2024 arXiv: 2410. 04223v1[cs. LG]

    [69]

    Zhang C W, Zhai Y S, Gong Z Y, Duan H L, She Y B, Yang Y F, Su A 2024 J. Cheminformatics 16 89Google Scholar

    [70]

    Choi J, Lee B 2024 Commun. Mater. 5 13Google Scholar

    [71]

    Wang Y X, Li Y, Tang Z C, Li H, Yuan Z L, Tao H G, Zou N L, Bao T, Liang X H, Chen Z Z, Xu S H, Bian C, Xu Z M, Wang C, Si C, Duan W H, Xu Y 2024 Sci. Bull. 69 2514Google Scholar

    [72]

    Liu Y, Yang Z W, Yu Z Y, Liu Z T, Liu D H, Lin H L, Li M Q, Ma S C, Avdeev X, Shi S Q 2023 J. Materiomics 9 798Google Scholar

    [73]

    Buehler M J 2024 Adv. Funct. Mater. 34 9531

    [74]

    Wu T, Shen J Z, Jia Z X, Wang Y X, Zheng Z L 2025 arXiv: 2502. 18890v1[cs. CL]

    [75]

    Obuchi K, Funaya K, Toyama K 2024 NEC Tech. J. 17 46

    [76]

    Li R C, Patel T, Wang Q Y, Du X Y 2024 arXiv: 2408. 14033v2 [cs. AI]

    [77]

    Luo Z M, Yang Z L, Xu Z X, Yang W, Du X Y 2025 arXiv: 2501. 04306v1[cs. CL]

    [78]

    Tang Z C, Li H, Lin P Z, Gong X X, Jin G, He L X, Jiang H, Ren X G, Duan W H, Xu Y 2024 Nat. Commun. 15 8815Google Scholar

  • [1] 白靖宜, 黄桥高, 高鹏骋, 问昕, 褚勇. 基于去噪概率扩散模型的蝠鲼流场智能化预测. 物理学报, doi: 10.7498/aps.74.20241499
    [2] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能. 物理学报, doi: 10.7498/aps.74.20241379
    [3] 吴思远, 李泓. 大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建. 物理学报, doi: 10.7498/aps.74.20250572
    [4] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, doi: 10.7498/aps.73.20240006
    [5] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, doi: 10.7498/aps.72.20230208
    [6] 王龙, 汪刘应, 刘顾, 唐修检, 葛超群, 王滨, 许可俊, 王新军. 基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计. 物理学报, doi: 10.7498/aps.72.20231084
    [7] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, doi: 10.7498/aps.70.20202235
    [8] 魏新权, 毕甲紫, 李然. 超高强块体非晶合金的研究进展. 物理学报, doi: 10.7498/aps.66.176408
    [9] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计. 物理学报, doi: 10.7498/aps.66.036104
    [10] 巫金波, 温维佳. 场诱导软物质智能材料研究进展. 物理学报, doi: 10.7498/aps.65.188301
    [11] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, doi: 10.7498/aps.65.116802
    [12] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, doi: 10.7498/aps.64.084401
    [13] 安宝冉, 刘国平. 带时延与丢包的网络化多智能体系统控制器设计. 物理学报, doi: 10.7498/aps.63.140203
    [14] 高仁璟, 王国明, 刘书田, 唐祯安. 具有特定频段的左手材料构造与设计优化. 物理学报, doi: 10.7498/aps.61.054103
    [15] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, doi: 10.7498/aps.60.054103
    [16] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, doi: 10.7498/aps.60.108901
    [17] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, doi: 10.7498/aps.58.4041
    [18] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, doi: 10.7498/aps.58.3293
    [19] 舒 斌, 张鹤鸣, 朱国良, 樊 敏, 宣荣喜. 基于智能剥离技术的SOI材料制备. 物理学报, doi: 10.7498/aps.56.1668
    [20] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, doi: 10.7498/aps.55.3043
计量
  • 文章访问数:  745
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-17
  • 修回日期:  2025-06-03
  • 上网日期:  2025-07-03

/

返回文章
返回